【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車經(jīng)過這個十字路口.
(1)請用“樹形圖”或“列表法”列舉出這兩輛汽車行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車都向左轉(zhuǎn)的概率.
【答案】
(1)
解:兩輛汽車所有9種可能的行駛方向如下:
甲汽車 乙汽車 | 左轉(zhuǎn) | 右轉(zhuǎn) | 直行 |
左轉(zhuǎn) | (左轉(zhuǎn),左轉(zhuǎn)) | (右轉(zhuǎn),左轉(zhuǎn)) | (直行,左轉(zhuǎn)) |
右轉(zhuǎn) | (左轉(zhuǎn),右轉(zhuǎn)) | (右轉(zhuǎn),右轉(zhuǎn)) | (直行,右轉(zhuǎn)) |
直行 | (左轉(zhuǎn),直行) | (右轉(zhuǎn),直行) | (直行,直行) |
(2)
解:由上表知:兩輛汽車都向左轉(zhuǎn)的概率是: .
【解析】(1)利用樹形圖”或“列表法”即可求出兩輛汽車行駛方向所有可能的結(jié)果;(2)根據(jù)(1)中的列表情況即可求出這兩輛汽車都向左轉(zhuǎn)的概率.
【考點精析】利用列表法與樹狀圖法對題目進行判斷即可得到答案,需要熟知當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅家有一塊L形的菜地,要把L形的菜地按如圖所示分成兩塊面積相等的梯形,種上不同的蔬菜.這兩個梯形的上底都是a m,下底都是b m,高都是(b-a) m.
(1)求小紅家這塊L形菜地的面積.(用含a、b的代數(shù)式表示)
(2)若a2+b2=15,ab=5,求小紅家這塊L形菜地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點B1、B2、B3…和A1、A2、A3…分別在OM和ON上,且△A1B1A2、△A2B2A3、△A3B3A4、…分別為等邊三角形,已知OA1=1,則△A2018B2018A2019的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°.如果將該三角形繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,點B1恰好落在邊BC的中點處.那么旋轉(zhuǎn)的角度等于( )
A.55°
B.60°
C.65°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為踐行黨的群眾路線,六盤水市教育局開展了大量的教育教學(xué)實踐活動,如圖是其中一次“測量旗桿高度”的活動場景抽象出的平面幾何圖形.
活動中測得的數(shù)據(jù)如下:
①小明的身高DC=1.5m
②小明的影長CE=1.7cm
③小明的腳到旗桿底部的距離BC=9cm
④旗桿的影長BF=7.6m
⑤從D點看A點的仰角為30°
請選擇你需要的數(shù)據(jù),求出旗桿的高度.(計算結(jié)果保留到0.1,參考數(shù)據(jù) ≈1.414. ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項式2x2+x+a有一個因式是(x+2),求另一個因式以及a 的值
解:設(shè)另一個因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個因式是(2x3),a 的值是6.
請你仿照以上做法解答下題:已知二次三項式3x2 10x m 有一個因式是(x+4),求另一個因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(10,0)、C(0,3),直線 與BC相交于點D,拋物線y=ax2+bx經(jīng)過A、D兩點.
(1)求拋物線的解析式;
(2)連接AD,試判斷△OAD的形狀,并說明理由.
(3)若點P是拋物線的對稱軸上的一個動點,對稱軸與OD、x軸分別交于點M、N,問:是否存在點P,使得以點P、O、M為頂點的三角形與△OAD相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在同一直角坐標(biāo)系中,反比例函數(shù)y= 與二次函數(shù)y=﹣x2+2x+c的圖象交于點A(﹣1,m).
(1)求m、c的值;
(2)求二次函數(shù)圖象的對稱軸和頂點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com