【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BC=AC,∠C=90°,直角頂點C在x軸上,一銳角頂點B在y軸上.
(1)如圖①若AD于垂直x軸,垂足為點D.點C坐標是(﹣1,0),點A的坐標是(﹣3,1),求點B的坐標.
(2)如圖②,直角邊BC在兩坐標軸上滑動,若y軸恰好平分∠ABC,AC與y軸交于點D,過點A作AE⊥y軸于E,請猜想BD與AE有怎樣的數(shù)量關系,并證明你的猜想.
(3)如圖③,直角邊BC在兩坐標軸上滑動,使點A在第四象限內,過A點作AF⊥y軸于F,在滑動的過程中,請猜想OC,AF,OB之間有怎樣的關系(直接寫出結論,不需要證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達式和頂點坐標;
(2)將該拋物線向右平移1個單位,平移后的拋物線與原拋物線相交于點A,求點A的坐標;
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點C,點A關于平移后拋物線的對稱軸的對稱點為點B,兩條拋物線在點A、C和點A、B之間的部分(包含點A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個單位,在平移過程中直線與圖象M始終有兩個公共點,請你寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點作圓的切線。
已知:P為⊙O外一點。
求作:經過點P的⊙O的切線
小敏的作法如下:
如圖:
①連接OP,作線段OP的垂直平分線MN交OP于C
②以點C為圓心,CO的長為半徑作圓,交⊙O 于A,B兩點
③作直線PA,PB所以直線PA,PB就是所求的切線
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,E、F分別在邊AB、CD上,EF∥BC,AE:BE=1:2,對角線AC交EF于G,若BC=10cm,AD=6cm,則EF的長等于______ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲.游戲時的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時,若出現(xiàn)相同手勢,則不分勝負游戲繼續(xù),直到分出勝負,游戲結束.三人游戲時,若三種手勢都相同或都不相同,則不分勝負游戲繼續(xù);若出現(xiàn)兩人手勢相同,則視為一種手勢與第三人所出手勢進行對決,此時,參照兩人游戲規(guī)則.例如甲、乙二人同時出石頭,丙出剪刀,則甲、乙獲勝.假定甲、乙、丙三人每次都是隨機地做這三種手勢,那么:
(1)請你用畫樹狀圖或列表的方式,求出一次游戲中甲、乙兩人出第一次手勢時,不分勝負的概率;
(2)請直接寫出一次游戲中甲、乙、丙三人出第一次手勢時,不分勝負的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為應對越來越嚴重的霧霾天氣,孔明同學所在班級的家長委員會,準備為該班集資捐贈一臺大型的空氣凈化機,現(xiàn)知道某商場將該型號的空氣凈化機按標價的八折出售,每臺空氣凈化機仍可獲利,已知該型號客氣凈化機的進價為元.
求該空氣凈化機的標價.
若該班有名學生,則該班每位學生家長應平均捐助多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點C逆時針旋轉60°,得到△MNC,連接BM,那么BM的長是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com