【題目】如圖,拋物線y=x2+bx+c,經(jīng)過矩形OABCA(3,0)C(0,2),連結(jié)OBD為橫軸上一個動點,連結(jié)CD,以CD為直徑作⊙M,與線段OB有一個異于點O的公共點E,連結(jié)DE.過DDFDE,交⊙MF

(1)求拋物線的解析式;

(2)tanFDC的值;

(3)①當點D在移動過程中恰使F點落在拋物線上,求此時點D的坐標;

②連結(jié)BF,求點D在線段OA上移動時,BF掃過的面積.

【答案】(1) y=x2+x+2;(2)(3)(,0);②3

【解析】

(1)將點AC的坐標代入拋物線的表達式,即可求解;

(2) 連接CECF、FO,證明FDC=∠ECD=∠EOD=∠BOA,即可求解;

(3) ①如圖2,連接FO,則FOG=∠FCD,證明FOG=∠FCD=∠CDE=∠COE,通過tan∠FOG=tan∠COB=,來確定直線OF的表達式,進而求解;

如圖3,當點D、O重合時,連接CF、BF,由tan∠FOG=,設(shè)FG=3a,則OG=2a=HC,HF=2GF=23a,由同理可得:CHF∽△FGO,則,求得a的值,根據(jù)BF掃過的面積為BOF的面積,即可求解.

解:(1)將點AC的坐標代入拋物線的表達式得: ,

解得:,

故拋物線的解析式為:y=x2+x+2

(2)如圖1,連接CE、CF、FO,

CD是直徑,

∴∠CED=90°,即CEDE

DFDE,

∴∠FDC=∠ECD=∠EOD=∠BOA,

∴tan∠FDC=tan∠BOA=;

(3)①如圖2

連接FO,則FOG=∠FCD,

CD是直徑,

∴∠CFD=90°,

同理FDE=90°,

FCDE

∴∠FCD=∠CDE=∠COE,

∴∠FOG=∠FCD=∠CDE=∠COE,

∴tan∠FOG=tan∠COE=tan∠COB=,

故直線OF的表達式為:y=x,

聯(lián)立①②并解得:,故點F(1);

過點Fy軸的平行線GH,交x軸于點G,交過點Cx軸的平行線于點H,

FG=CH=1,HF=2=,

∵∠HFC+∠GFD=90°,HFC+∠HCF=90°,

∴∠HCF=∠GFD

CHF=∠FGD=90°,

∴△CHF∽△FGD,

,即,解得:GD=

OD=1=,

故點D的坐標為:(,0);

如圖3,當點DO重合時,連接CF、BF,

BF掃過的面積為BOF的面積,CFO=90°

過點Fy軸的平行線HG,交x軸于點G,交過點Cx軸的平行線于點H,

同理可得:CHF∽△FGO,則

tan∠FOG=,設(shè)FG=3a,則OG=2a=HCHF=2GF=23a,

,解得:a=;

Rt△FOG中,FO=,

同理在Rt△AOB中,OB=

EF是圓的直徑,故OFOE,

BF掃過的面積=SBOF=×BO×FO=,

BF掃過的面積為3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防新冠肺炎,某藥店銷售甲、乙兩種防護口罩,已知甲口罩每袋的售價比乙口罩多5元,小明從該藥店購買了3袋甲口罩和2袋乙口罩共花費115元.

1)求該藥店甲、乙兩種口罩每袋的售價分別為多少元?

2)根據(jù)消費者需求,藥店決定用不超過8000元購進甲、乙兩種口罩共400袋.已知甲口罩每袋的進價為22.2元,乙口罩每袋的進價為17.8元,要使藥店獲利最大,應(yīng)該購進甲、乙兩種口罩各多少袋,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃投資萬元引進一條汽車配件流水生產(chǎn)線,經(jīng)過調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬元,每件出廠價萬元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費用累計(萬元)如下表:

···

維修、保養(yǎng)費用累計萬元

···

若上表中第年的維修、保養(yǎng)費用累計(萬元)的數(shù)量關(guān)系符合我們已經(jīng)學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個.

1)求出關(guān)于的函數(shù)解析式;

2)投產(chǎn)第幾年該公司可收回萬元的投資?

3)投產(chǎn)多少年后,該流水線要報廢(規(guī)定當年的盈利不大于維修、保養(yǎng)費用累計即報費)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一坡角40°,坡面長AC=100m的小山頂上安裝了一電信基站AB,在山底的C處,測得塔頂仰角為60°,求塔的高AB(精確到0.1m)(以下供參考:sin40°≈0.64cos40°≈0.77,tan40°≈0.84,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A2,m),B(-23m)分別在反比例函數(shù) 的圖象上,經(jīng)過點AB的直線與y軸相交于點C

1)求mk的值;

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知汽車燃油箱中的y(單位:升)與該汽車行駛里程數(shù)x(單位:千米)是一次函數(shù)關(guān)系.賈老師從某汽車租賃公司租借了一款小汽車,擬去距離出發(fā)地600公里的目的地旅游(出發(fā)之前,賈老師往該汽車燃油箱內(nèi)注滿了油).行駛了200千米之后,汽車燃油箱中的剩余油量為40升;又行駛了100千米,汽車燃油箱中的剩余油量為30升.

1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫函數(shù)的定義域);

2)當汽車燃油箱中的剩余油量為8升的時候,汽車儀表盤上的燃油指示燈就會亮起來.在燃油指示燈亮起來之前,賈老師駕駛該車可否抵達目的地?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于AB(6,n)兩點.

(1)求kn的值;

(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,作關(guān)于直線的軸對稱圖形的中點,若點在同一直線上,則的長為___________

查看答案和解析>>

同步練習冊答案