【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的說法是_________(填序號).
【答案】②③④
【解析】
根據(jù)相遇前的圖像乙的速度有變化,沒有都大于甲的速度,即可判斷①,根據(jù)出發(fā)后1小時,甲乙相遇,可判斷②,求出甲路程與時間的函數(shù),及乙在0.5到1.5小時這段時間的函數(shù),即可判斷③,由圖像甲先到到達(dá)20km處,知甲先到終點(diǎn),故可判斷④.
根據(jù)相遇前的圖像乙的速度有變化,沒有都大于甲的速度,∴①錯誤;
根據(jù)出發(fā)后1小時,甲乙相遇,∴②正確,
利用甲函數(shù)經(jīng)過原點(diǎn)與(1,10)求出甲路程與時間的函數(shù)為y=10x,
乙在0.5到1.5小時這段時間的函數(shù)經(jīng)過(0.5,8),(1,10),求出這段時間的函數(shù)為y=4x+6,
∴1.5h時,甲的路程為15km,乙的路程為12km, 甲的行程比乙多3km,故③正確,
由圖像甲先到到達(dá)20km處,知甲先到終點(diǎn),故可判斷④正確.
故填②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進(jìn)價多200元,用5萬元購進(jìn)A型凈水器與用4.5萬元購進(jìn)B型凈水器的數(shù)量相等
(1)求每臺A型、B型凈水器的進(jìn)價各是多少元?
(2)該公司計劃購進(jìn)A,B兩種型號的凈水器共50臺進(jìn)行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時A型凈水器每臺售價2500元,B型凈水器每臺售價2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻(xiàn)a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻(xiàn)扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(diǎn)(1,0)作x軸的垂線交l1于點(diǎn)A1,過點(diǎn)A1作y軸的垂線交l2于點(diǎn)A2,過點(diǎn)A2作x軸的垂線交l1于點(diǎn)A3,過點(diǎn)A3作y軸的垂線交l2于點(diǎn)A4,…,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為( )
A.(21009,21010)B.(﹣21009,21010)
C.(21009,﹣21010)D.(﹣21009,﹣21010)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠C=52°,BE為AC邊上的中線,AD平分∠BAC,交BC邊于點(diǎn)D,過點(diǎn)B作BF⊥AD,垂足為F,則∠EBF的度數(shù)為( )
A.19°B.33°C.34°D.43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更新樹木品種,某植物園計劃購進(jìn)甲、乙兩個品種的樹苗栽植培育若計劃購進(jìn)這兩種樹苗共41棵,其中甲種樹苗的單價為6元/棵,購買乙種樹苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量.請設(shè)計購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
求出每天的銷售利潤元與銷售單價元之間的函數(shù)關(guān)系式;
求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個方面進(jìn)行量化考核.甲、乙、丙、丁兩項得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | 86 | 92 | 80 | 90 |
面試 | 90 | 88 | 94 | 84 |
(1)這4名選手筆試成績的中位數(shù)是 分,面試的平均數(shù)是 分.
(2)該公司規(guī)定:筆試、面試分別按40%,60%的比例計入總分,且各項成績都不得低于85分. 根據(jù)規(guī)定,請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點(diǎn),且AM=BM.
(1)求點(diǎn)M的坐標(biāo);
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于()
A.B.C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com