(1)證明:∵四邊形ABCD為矩形
∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC
∴OA=OB=OC,∠DAE=∠OCB(兩直線平行,內(nèi)錯角相等)
∴∠OCB=∠OBC
∴∠DAE=∠CBF
又∵AE=
OA,BF=
OB
∴AE=BF
∴△ADE≌△BCF;
(2)解:過點F作FG⊥CD于點G,
∴∠DGF=90°
∵四邊形ABCD是矩形,
∴∠DCB=90°
∴∠DGF=∠DCB
又∵∠FDG=∠BDC
∴△DFG∽△DBC
∴
由(1)可知F為OB的中點,
所以DF=3FB,得
∴
∴FG=3,DG=6
∴GC=DC-DG=8-6=2
在Rt△FGC中,
cm.
(說明:其他解法可參照給分,如延長CF交AB于點H,利用△DFC∽△BFH計算.)
分析:(1)根據(jù)矩形的對邊相等、對角線相等且相互平分等性質(zhì)可證△ADE≌△BCF;
(2)要求CF的長,若CF在一直角三角形中,則可用勾股定理求解.由此需要添加輔助線,過點F作FG⊥CD于點G,則△DFG∽△DBC;由(1)的結(jié)論可得DF=3FB,則可算出FG、DG的值,進而求得CF的長.
點評:本題主要考查了矩形的性質(zhì)、全等三角形、相似三角形的判定以及用勾股定理解直角三角形等,較為復雜.