根據(jù)菱形對(duì)角線可以求菱形的面積S=AC?BD,菱形對(duì)角線互相垂直平分,根據(jù)AO,BO即可求得AB的長(zhǎng)度,因?yàn)锽E⊥CD所以BE為菱形ABCD的高,菱形面積S=CD?BE,根據(jù)菱形面積相等即可求BE的值.
解:菱形的面積S=AC?BD,
菱形對(duì)角線互相垂直平分∴△ABO為直角三角形,
∵AO=6cm,BO=8cm,
∴AB==10cm,
,∵BE⊥CD
∴BE為菱形ABCD的高,菱形面積S=CD?BE
即S=AC?BD=CD?BE,
BE=9.6cm
故答案為 9.6cm.
考查了勾股定理在直角三角形中的運(yùn)用,考查了菱形對(duì)角線互相垂直平分的性質(zhì),考查了菱形面積的計(jì)算,本題中根據(jù)勾股定理求AB的長(zhǎng)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是矩形,AB=12,AD = 5,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE,則DE:AC 的值是……(    )
A.2:3B.119:169C.23:27D.12:13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,延長(zhǎng)ABCD的邊DC到E,使CE=CD,連結(jié)AE交BC于點(diǎn)F。
(1)試說明:△ABF≌△ECF;(4分。)
(2)連結(jié)AC、BD相交于點(diǎn)O,連結(jié)OF,問OF與AB有怎樣的數(shù)量關(guān)系與位置關(guān)系,說明理由。(4分。)
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在正方形中,上一點(diǎn),延長(zhǎng),使,連接并延長(zhǎng)交
小題1:求證:;(4分)
小題2:將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到
判斷四邊形是什么特殊四邊形?并說明理由.(6分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

黃金比的近似值為____________,準(zhǔn)確值為   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題5分)如圖,四邊形ABCD中,AB=CD,點(diǎn)E、F、G、H分別是BC、AD、BD、AC的中點(diǎn),
猜想四邊形EHFG的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,
直線MN是梯形的對(duì)稱軸,P為直線MN上的一動(dòng)點(diǎn),則PC+PD的最小值為()
A.1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形ABCD的一條對(duì)角線將該梯形分成面積比為1:5的兩個(gè)三角形,則梯形ABCD的中位線MN,將該梯形分成的兩個(gè)梯形的面積比為              .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正方形的面積是2,則它的對(duì)角線長(zhǎng)是           。

查看答案和解析>>

同步練習(xí)冊(cè)答案