【題目】已知,點(diǎn)D、E、F分別是等邊△ABC的三條邊AB、BC、CA上的點(diǎn).
(1)如圖(1),若ED⊥AB,DF⊥AC,F(xiàn)E⊥BC,求證:△DEF是等邊三角形;
(2)如圖(2),若AD=BE=CF,求證:△DEF是等邊三角形;
(3)如圖(3),若△DEF是等邊三角形,求證:AD=BE=CF.
【答案】
(1)
證明:如圖1中,
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,
∵ED⊥AB,D⊥AC,EF⊥CB,
∴∠BDE=∠DFA=∠FEC=90°,
∴∠BED=∠ADF=∠CFE=30°,
∴∠EDF=∠DFE=∠FED=60°,
∴△DEF是等邊三角形.
(2)
證明:如圖2中,
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,AB=BC=CA,
∵AD=BE=CF,
∴BD=EC=AF,
在△ADF、△BED和△CFE中
,
∴△ADF≌△BED≌△CFE,
∴DE=EF=FD,
∴△DEF是等邊三角形;
(3)
證明:如圖3中,
∵△ABC,△DEF是等邊三角形,
∴∠A=∠B=60°,DF=DE,且∠FDE=60°,
∴∠BAD+∠ADF=∠ADF+∠AFD=120°,
∴∠AFD=∠BDE,
在△ADF和△BED中,
,
∴△ADF≌△BED(AAS),
同理可得:△ADF≌△CFE,
∴△ADF≌△CFE≌△BED;
∴AD=BE=CF.
【解析】(1)只要證明∠EDF=∠DFE=∠FED=60°即可解決問(wèn)題.(2)根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA,AD=BE=CF,進(jìn)一步證得BD=EC=AF,即可證得△ADF≌△BED≌△CFE,根據(jù)全等三角形的性質(zhì)得出DE=EF=FD,即可證得△DEF是等邊三角形;(3)由等邊三角形的性質(zhì)可知∠A=∠B=60°,DF=DE,且∠FDE=60°,所以可得出∠AFD=∠BDE,從而可證得△ADF≌△BED,同理可證得其它三角形全等,利用全等三角形的性質(zhì)證得結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問(wèn)題:
(1)請(qǐng)你根據(jù)圖中A,B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù).
(2)請(qǐng)問(wèn)A,B兩點(diǎn)之間的距離是多少?
(3)在數(shù)軸上畫出與點(diǎn)A的距離為2的點(diǎn)(用不同于A,B的其它字母表示),并寫出這些點(diǎn)表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)∠AOB平分線上一點(diǎn)C作CD∥OB交OA于點(diǎn)D,E是線段OC的中點(diǎn),請(qǐng)過(guò)點(diǎn)E畫直線分別交射線CD、OB于點(diǎn)M、N,探究線段OD、ON、DM之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點(diǎn)C成中心對(duì)稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說(shuō)明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com