【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
分?jǐn)?shù)段(分?jǐn)?shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
請(qǐng)根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= ,b= ;請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來描述成績(jī)分布情況,則分?jǐn)?shù)段70≤x<80對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(3)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué). 學(xué)校從這4名同學(xué)中隨機(jī)抽2名同學(xué)接受電視臺(tái)記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為 .
【答案】(1)12,40;,補(bǔ)全直方圖見解析;(2)108°;(3).
【解析】
(1)首先根據(jù)分?jǐn)?shù)段為60≤x<70的頻數(shù)除以頻率求得總?cè)藬?shù),然后減去其它小組的頻數(shù)即可求得a的值,根據(jù)總?cè)藬?shù)和分?jǐn)?shù)段為80≤x<90的頻數(shù)即可求得b的值;根據(jù)求出的a的值,即可補(bǔ)全頻數(shù)分布直方圖;
(2)用360°乘以相應(yīng)分?jǐn)?shù)段所占的百分比即可求得圓心角的度數(shù);
(3)列表將所有等可能的結(jié)果列舉出來,再利用概率公式求解即可.
解:(1)∵分?jǐn)?shù)段為60≤x<70的頻數(shù)為8,占20%,∴總?cè)藬?shù)為8÷20%=40人,
∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,即b=40;
故答案為:12,40;
補(bǔ)全頻數(shù)分布直方圖如下:
(2)∵分?jǐn)?shù)段為70≤x<80所占的百分比為30%,
∴分?jǐn)?shù)段70≤x<80對(duì)應(yīng)扇形的圓心角的度數(shù)為:360°×30%=108°,
故答案為:108°;
(3)用A、B表示2名男生,用a、b表示2名女生,列表得:
∵共有12種等可能的結(jié)果,其中一男一女的有8種情況,
∴P(正好抽到一男一女)=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近一周,各個(gè)學(xué)校均在緊張有序地進(jìn)行中考模擬考試,學(xué)生們通過模擬考試來調(diào)整自己的狀態(tài)并了解自己的學(xué)業(yè)水平.某中學(xué)物理教研組想通過此次中考模擬的成績(jī)來預(yù)估中考的各個(gè)分?jǐn)?shù)段人數(shù),在全年級(jí)隨機(jī)抽取了男.女各40名學(xué)生的成績(jī)(滿分為80分,女生成績(jī)中最低分為45分),并將數(shù)據(jù)進(jìn)行整理分析,給出了下面部分信息:
①男生成績(jī)扇形統(tǒng)計(jì)圖和女生成績(jī)頻數(shù)分布直方圖如下:(數(shù)據(jù)分組為A組:x<50;B組:50≤x<60;C組:60≤x<70;D組:70≤x≤80)
②男生C組中全部15名學(xué)生的成績(jī)?yōu)椋?/span>
63,69,64,62,68,69,65,69,65,66,67,61,67,66,69.
③兩組數(shù)據(jù)的平均數(shù).中位數(shù).眾數(shù).滿分率.極差(單位:分)如下表所示:
平均數(shù) | 中位數(shù) | 眾數(shù) | 滿分率 | 極差 | |
男生 | 70 | b | c | 25% | 32 |
女生 | 70 | 68 | 78 | 15% | d |
(1)扇形統(tǒng)計(jì)圖A組學(xué)生中所對(duì)應(yīng)的圓心角α的度數(shù)為 ,中位數(shù)b= ,眾數(shù)c= ,極差d= .
(2)通過以上的數(shù)據(jù)分析,你認(rèn)為 (填“男生”或“女生”)的物理成績(jī)更好,并說明理由:
① ;② .
(3)若成績(jī)?cè)?/span>70分(包含70分)以上為優(yōu)秀,請(qǐng)你估計(jì)該校1200名學(xué)生中此次考試中優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果基地為了選出適應(yīng)市場(chǎng)需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各300株分別種植在甲、乙兩個(gè)大棚,對(duì)市場(chǎng)最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性進(jìn)行了抽樣調(diào)查,過程如下:
收集數(shù)據(jù)從甲、乙兩個(gè)大棚中分別隨機(jī)收集了相同生產(chǎn)周期內(nèi)25株秧苗生長(zhǎng)出的小西紅柿的個(gè)數(shù):
甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33
乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71
整理數(shù)據(jù)按如下分組整理樣本數(shù)據(jù):
個(gè)數(shù)(x) 株數(shù)(株) 大棚 | 25≤x<35 | 35≤x<45 | 45≤x<55 | 55≤x<65 | 65≤x<75 | 75≤x<85 |
甲 | 5 |
| 5 |
| 4 | 1 |
乙 | 2 | 4 |
| 6 | 5 | 2 |
(說明:45個(gè)以下為產(chǎn)量不合格,45個(gè)及以上為產(chǎn)量合格,其中45≤x<65個(gè)為產(chǎn)量良好,65≤x<85個(gè)為產(chǎn)量?jī)?yōu)秀)
分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 53 |
| 236.24 |
乙 | 53 | 57 | 215.04 |
得出結(jié)論
(1)補(bǔ)全上述表格;
(2)可以推斷出 大棚的小西紅柿秩苗品種更適應(yīng)市場(chǎng)需求,理由為 (至少從兩個(gè)不同的角度說明推斷的合理性);
(3)估計(jì)乙大棚的300株小西紅柿秧苗中產(chǎn)量?jī)?yōu)秀的有多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)如圖1,在菱形中,已知,,拋物線()經(jīng)過,,三點(diǎn).
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________;
(2)求拋物線的解析式.
(Ⅱ)如圖2,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),直線垂直于點(diǎn),點(diǎn)在直線上.
(3)當(dāng)的值最小時(shí),則點(diǎn)的坐標(biāo)為____________;
(4)在(3)的條件下,連接、、得,問在拋物線上是否存在點(diǎn),使得以,,為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1,求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切?并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江西省,第12題,3分)已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對(duì)應(yīng)邊為A'.若點(diǎn)A'到矩形較長(zhǎng)兩對(duì)邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為______________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,某商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品1件和乙商品3件共需240元;購進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).如:若從圖起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;若第二次擲得,就從開始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率.
()淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com