【題目】如圖,已知點在數(shù)軸上對應的數(shù)為,點對應的數(shù)為,之間的距離記作AB.

已知a=-2,ba12,(1)則B點表示的數(shù)是_____;

(2)設點在數(shù)軸上對應的數(shù)為,當PA-PB=4時,求的值;

(3)若點M以每秒1個單位的速度從A點出發(fā)向右運動,同時點N以每秒2個單位的速度從B點向左運動。設運動時間是t秒,則運動t秒后,

用含t的代數(shù)式表示M點到達的位置表示的數(shù)為_____, N點到達的位置表示的數(shù)為_____

t為多少秒時,MN之間的距離是9?

【答案】110;(2x=6;(3-2+t , 10-2t; t值為1秒或7秒時MN之間的距離為9

【解析】

(1)根據(jù)兩點間距離公式可以求解;

(2)根據(jù)兩點間距離公式列出方程,可以求解;

(3)MN之間的距離是9,應該分追上和超過兩種情況,列出方程可計算求出答案.

(1)10

(2)

x=6

(3)-2+t , 10-2t

(10-2t)-(-2+t)=9

t=1

(-2+t)-(10-2t)=9

t=7

綜上,當t值為1秒或7秒時MN之間的距離為9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調(diào)控等手段引導市民節(jié)約用水。某市規(guī)定如下用水收費標準:每月每戶的用水不超過6時,水費按正常收費;超過6時,超過的部分收較高水費。該市某戶居民今年2月份的用水量為9,繳納水費為27元;3月份的用水量為11,繳納水費為37元。

(1)求在限定量以內(nèi)每噸多少元?超出部分的水費每噸多少元?

(2)若該市某居民今年4月份的用水量為13. 則應繳納水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

1個等式:a1,

2個等式:a2

3個等式:a3,

請解答下列問題:

(1)按以上規(guī)律列出第5個等式:a5      

(2)用含有n的代數(shù)式表示第n個等式:an    (n為正整數(shù));

(3)a1+a2+a3++a2019的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰RtABC,使BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數(shù)關系的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是( ) .

A. 對角線相等的四邊形是矩形;

B. 對角線互相垂直的四邊形是菱形;

C. 對角線互相平分的四邊形是平行四邊形;

D. 對角線互相垂直平分的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的頂點AB坐標分別為(1,1)、(3,1),若把等邊△ABC先沿x軸翻折,再向左平移1個單位”為第一次変換,則這樣連續(xù)經(jīng)過2017次變換后,等邊△ABC的頂點C的坐標為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平移和翻折是初中數(shù)學兩種重要的圖形變化.

(1)平移運動

①把筆尖放在數(shù)軸的原點處,先向負方向移動3個單位長度,再向正方向移動個單位長度,這時筆尖的位置表示什么數(shù)?用算式表示以上過程及結果是( )

A. B.

C. D.

②一機器人從原點O開始,第1次向左跳1個單位,緊接著第2次向右跳2個單位,第3次向左跳3個單位,第4次向右跳4個單位,……,依次規(guī)律跳,當它跳2019次時,落在數(shù)軸上的點表示的數(shù)是_____.

(2)翻折變換

①若折疊紙條,表示-1的點與表示3的點重合,則表示2019的點與表示_______的點重合.

②若數(shù)軸上A、B兩點之間的距離為2019(AB的左側,且折痕與①折痕相同),且AB兩點經(jīng)折疊后重合,則A點表示_____B點表示______.

③若數(shù)軸上折疊重合的兩點的數(shù)分別為a,b,折疊中間點表示的數(shù)為____.(用含有a,b的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)一點,連接PA、PB、PC、PD,已知AB=3,BC=4,PAB, PBC, PCD, PDA,的面積分別為,,, ,以下判斷: PA+PB+PC+PD的最小值為10;②若PAB≌△PCD,PAD≌△PBC ;③若=,=④若PAB∽△PDA,PA=2.4.其中正確的是_____________(把所有正確的結論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PEABE,PFACF,MEF中點,則AM的最小值為______

查看答案和解析>>

同步練習冊答案