已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CDDA四條邊上的點(且不與各邊頂點重合),設(shè)m=EF+FG+GH+HE,探索m的取值范圍.

(1)如圖2,當(dāng)EF、GH分別是AB、BCCD、DA四邊中點時,m________

(2)為了解決這個問題,小貝同學(xué)采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,從而找到解決問題的途徑,求得m的取值范圍.

①請在圖1中補全小貝同學(xué)翻折后的圖形;

m的取值范圍是____________

【解析】本題主要考查對平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點的理解和掌握

 

【答案】

(1)由題意得AE=AB,AH=AD,根據(jù)勾股定理得EH=5,同理可求得HG=GF=FE=5,即m=20;

(2)如圖所示(虛線可以不畫),20≤m<28.

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:如圖,在矩形ABCD中,E、F分別是邊BC、AB上的點,且EF=ED,EF⊥ED.
求證:AE平分∠BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在矩形ABCD中,BC=2,AE⊥BD,垂足為E,∠BAE=30°,那么△ECD的面積是( 。
A、2
3
B、
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)直接寫出點D的坐標(biāo);
(2)已知點B與點D在經(jīng)過原點的拋物線上,點P在第一象限內(nèi)的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結(jié)OP.若以O(shè)、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,∠AOD=120°,AB=4,那么BC=
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC與BD相交于點O,BE⊥AC于E,CF⊥BD于F,請你判斷BE與CF的大小關(guān)系,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案