如圖,依次連接一個(gè)邊長為1的正方形各邊的中點(diǎn),得到第二個(gè)正方形,再依次連接第二個(gè)正方形各邊的中點(diǎn),得到第三個(gè)正方形,按此方法繼續(xù)下去,則第六個(gè)正方形的面積是
 

精英家教網(wǎng)
分析:對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.對于本題而言,可以發(fā)現(xiàn),后面新得到的正方形是才得到的正方形的面積的一半,因而第n個(gè)正方形的表達(dá)式與2的負(fù)指數(shù)有關(guān).
解答:解:可以發(fā)現(xiàn),后面新得到的正方形是才得到的正方形的面積的一半,所以第n個(gè)正方形的面積可表示為
1
2n-1
,第6個(gè)為
1
25
=
1
32
點(diǎn)評:本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,依次連接一個(gè)邊長為1的正方形各邊的中點(diǎn),得到第二個(gè)正方形,再依次連接第二個(gè)正方形各邊的中點(diǎn),得到第三個(gè)正方形,按此方法繼續(xù)下去,則第n個(gè)正方形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,依次連接一個(gè)邊長為1的正方形各邊的中點(diǎn),得到第二個(gè)正方形,再依次連接第二個(gè)正方形各邊的中點(diǎn),得到第三個(gè)正方形,按此方法繼續(xù)下去,則第二個(gè)正方形的面積是
1
2
1
2
;第六個(gè)正方形的面積是
1
32
1
32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似多邊形的性質(zhì)(帶解析) 題型:填空題

如圖,依次連接一個(gè)邊長為1的正方形各邊的中點(diǎn),得到第二個(gè)正方形,再依次連接第二個(gè)正方形各邊的中點(diǎn),得到第三個(gè)正方形,按此方法繼續(xù)下去,則第n個(gè)正方形的面積是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似多邊形的性質(zhì)(解析版) 題型:填空題

如圖,依次連接一個(gè)邊長為1的正方形各邊的中點(diǎn),得到第二個(gè)正方形,再依次連接第二個(gè)正方形各邊的中點(diǎn),得到第三個(gè)正方形,按此方法繼續(xù)下去,則第n個(gè)正方形的面積是  

 

查看答案和解析>>

同步練習(xí)冊答案