【題目】如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.

【答案】證明:∵CA=CB
∴∠CAB=∠CBA
∵△AEC和△BCD為等腰直角三角形,
∴∠CAE=∠CBD=45°,∠FAG=∠FBG,
∴∠FAB=∠FBA,
∴AF=BF,
在三角形ACF和△CBF中,
,
∴△AFC≌△BCF(SSS),
∴∠ACF=∠BCF
∴AG=BG,CG⊥AB(三線合一),
即CG垂直平分AB
【解析】求證△AFC≌△CEB可得∠ACF=∠BCF,根據(jù)等腰三角形底邊三線合一即可解題.
【考點精析】通過靈活運用等腰直角三角形和線段垂直平分線的性質(zhì),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上來回巡邏,一天早晨,他從崗亭出發(fā),中午停留在處,規(guī)定向北方向為正,當天上午連續(xù)行駛情況記錄如下(單位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

1處在崗亭何方?距離崗亭多遠?

(2)若摩托車每行駛1千米耗油升,這一天上午共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Q是半徑為3的⊙O上一點,點P與圓心O的距離OP5,則PQ長的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題“菱形是對角線互相垂直的四邊形”的逆命題是_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個圓柱的三種視圖,小明同學求出其中兩種視圖的面積分別為610,則該圓柱第三種視圖的面積為(

A.6B.10C.4D.610

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是BC邊上一點,BN⊥AD交AD的延長線于點N.

(1)如圖1,若CM∥BN交AD于點M.
①直接寫出圖1中所有與∠MCD相等的角:;(注:所找到的相等關(guān)系可以直接用于第②小題的證明過程
②過點C作CG⊥BN,交BN的延長線于點G,請先在圖1中畫出輔助線,再回答線段AM、CG、BN有怎樣的數(shù)量關(guān)系,并給予證明
(2)如圖2,若CM∥AB交BN的延長線于點M.請證明:∠MDN+2∠BDN=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中一個正方形剪開得到圖④,圖④中共有10個正方形…,如此下去,則第2014個圖中共有正方形的個數(shù)為( )

A. 2014. B. 2017 C. 6040 D. 6044

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用計算器計算時,下列說法錯誤的是( )

A. “計算”的按鍵順序是 1 ab/c 2 ﹣ 1 ab/c 3 ab/c 4 =

B. “計算”的按鍵順序是 3 EXP 5 ﹣ 2 8 =

C. “已知SinA=0.3,求銳角A”的按鍵順序是DEL 2ndF sin 0 . 3 =

D. “計算”的按鍵順序是1 ab/c 2 2ndF 5 =

查看答案和解析>>

同步練習冊答案