已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O(shè)為原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求點(diǎn)C的坐標(biāo)和過O、C、A三點(diǎn)的拋物線的解析式;
(2)P是此拋物線的對稱軸上一動點(diǎn),當(dāng)以P、O、C為頂點(diǎn)的三角形是等腰三角形時(shí),請直接寫出點(diǎn)P的坐標(biāo);
(3)M(x,y)是此拋物線上一個動點(diǎn),當(dāng)△MOB的面積等于△OAB面積時(shí),求M的坐標(biāo).
(1)由已知條件,可知OC=OA=
OB
tan30°
=2
3
,∠COA=60°,
C點(diǎn)的坐標(biāo)為(
3
,3),
設(shè)過O、A、C三點(diǎn)的拋物線的解析式為y=ax2+bx+c,
c=0
12a+2
3
b+c=0
3a+
3
b+c=3
,解得
a=-1
b=2
3
c=0
,
所求拋物線的解析式為y=-x2+2
3
x.

(2)由題意,設(shè)P(
3
,y),則:
OP2=y2+3、CP2=(y-3)2=y2-6y+9、OC2=12;
①當(dāng)OP=CP時(shí),6y=6,即 y=1;
②當(dāng)OP=OC時(shí),y2=9,即 y=±3(y=3舍去);
③當(dāng)CP=OC時(shí),y2-6y-3=0,即 y=3±2
3
;
∴P點(diǎn)的坐標(biāo)是(
3
,1)或(
3
,-3)或(
3
,3-2
3
)或(
3
,3+2
3
);

(3)
過A作AR⊥OB于R,過O作ON⊥MN于N,MN與y軸交于點(diǎn)D.
∵∠OAB=90°,∠BOA=30°,AB=2,
∴OA=2
3
,OB=4,
由三角形面積公式得:4×AR=2
3
×2,
AR=
3
,
∵△MOB的面積等于△OAB面積,
∴在直線OB兩邊,到OB的距離等于
3
的直線有兩條,直線和拋物線的交點(diǎn)就是M點(diǎn),
∠NOD=∠BOA=30°,ON=
3
,
則OD=2,
求出直線OB的解析式是y=
3
3
x,
則這兩條直線的解析式是y=
3
3
x+2,y=
3
3
x-2,
y=
3
3
x+2
y=-x2+2
3
x
,
y=
3
3
x-2
y=-x2+2
3
x

解得:
x1=
3
y1=3
,
x2=
2
3
3
y2=
8
3
x3=2
3
y3=0
,
x4=-
3
3
y4=-
5
3

此時(shí),M1
3
,3)、M2
2
3
3
,
8
3
).M3(2
3
,0).M4(-
3
3
,-
7
3
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請說明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在學(xué)校田徑運(yùn)動會上,九年級的一名高個子男生拋實(shí)心球,已知實(shí)心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男生的拋球處A點(diǎn)坐標(biāo)為(0,2),實(shí)心球在空中線路的最高點(diǎn)B點(diǎn)的坐標(biāo)是(6,5).
(1)求這個二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠(yuǎn)為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計(jì)算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB作勻速運(yùn)動,P′是P關(guān)于AD的對稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向作勻速運(yùn)動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關(guān)于x的函數(shù)解析式;
(2)求當(dāng)y取最大值時(shí),過點(diǎn)P,A,P′的二次函數(shù)解析式;
(3)能否在(2)中所求的二次函數(shù)圖象上找一點(diǎn)E使△EPP′的面積為20?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知A點(diǎn)坐標(biāo)為(6,0),B點(diǎn)坐標(biāo)為(0,8),⊙A與y軸相切,AB交⊙O于點(diǎn)P,過點(diǎn)P作⊙A的切線交y軸于點(diǎn)C,交x軸于點(diǎn)D.
(1)證明:AD=AB;
(2)求經(jīng)過A,D,C三點(diǎn)的拋物線的函數(shù)關(guān)系式;
(3)若點(diǎn)M在第一象限,且在(2)中的拋物線上,求四邊形AMCD面積的最大值及此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,梯形ABCD中,∠C=90°.動點(diǎn)E、F同時(shí)從點(diǎn)B出發(fā),點(diǎn)E沿折線BA-AD-DC運(yùn)動到點(diǎn)C時(shí)停止運(yùn)動,點(diǎn)F沿BC運(yùn)動到點(diǎn)C時(shí)停止運(yùn)動,它們運(yùn)動時(shí)的速度都是1cm/s.設(shè)E、F出發(fā)ts時(shí),△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2;
(2)當(dāng)點(diǎn)E在BA、DC上運(yùn)動時(shí),分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當(dāng)t為何值時(shí),△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過B(8、0),C(6、2
3
)兩點(diǎn),點(diǎn)A是點(diǎn)C關(guān)于拋物線y=ax2+bx的對稱軸的對稱點(diǎn),連接OA、AC、BC

(1)求拋物線的解析式.
(2)動點(diǎn)E從點(diǎn)O出發(fā),速度為3個單位/秒,沿O→A→C勻速運(yùn)動:動點(diǎn)F從點(diǎn)O出發(fā),速度為4個單位/秒,沿O→B勻速運(yùn)動,動點(diǎn)E、F同時(shí)出發(fā),若設(shè)運(yùn)動時(shí)間為t秒(0≤t≤2),△OEF的面積為S,請求出運(yùn)動過程中S與t的關(guān)系式.
(3)設(shè)P是拋物線對稱軸上的一點(diǎn),是否存在點(diǎn)P使以O(shè)、E、F、P為頂點(diǎn)的四邊形是平行四邊形?若不存在,請說明理由;若存在,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校課間操出操時(shí)樓梯口常出現(xiàn)擁擠現(xiàn)象,為詳細(xì)了解情況,九(1)班數(shù)學(xué)課題學(xué)習(xí)小組在樓梯口對前10分鐘出入人數(shù)進(jìn)行了觀察記錄,并根據(jù)得到的數(shù)據(jù)繪制成下面兩幅圖:
(1)在2至5分鐘時(shí),每分鐘出樓梯口的人數(shù)p(人)與時(shí)間t(分)的關(guān)系可以看作一次函數(shù),請你求出它的表達(dá)式.
(2)若把每分鐘到達(dá)樓梯口的人數(shù)y(人)與時(shí)間t(分)(2≤t≤8)的關(guān)系近似的看作二次函數(shù)y=-t2+12t+49,問第幾分鐘時(shí)到達(dá)樓梯口的人數(shù)最多?最多人數(shù)是多少?
(3)調(diào)查發(fā)現(xiàn),當(dāng)樓梯口每分鐘增加的滯留人數(shù)達(dá)到24人時(shí),就會出現(xiàn)安全隱患.請你根據(jù)以上有關(guān)部門信息分析是否存在安全隱患.若存在,求出存在隱患的時(shí)間段.若不存在,請說明理由.(每分鐘增加的滯留人數(shù)=每分鐘到達(dá)樓梯口的人數(shù)-每分鐘出樓梯樓的人數(shù))
(4)根據(jù)你分析的結(jié)果,對學(xué)校提一個合理化建議.(字?jǐn)?shù)在40個以內(nèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店經(jīng)營一批進(jìn)價(jià)每件為2元的小商品,在市場營銷的過程中發(fā)現(xiàn):如果該商品按每件最低價(jià)3元銷售,日銷售量為18件,如果單價(jià)每提高1元,日銷售量就減少2件.設(shè)銷售單價(jià)為x(元),日銷售量為y(件).
(1)寫出日銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)日銷售的毛利潤(毛利潤=銷售總額-總進(jìn)價(jià))為P(元),求出毛利潤P(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)在下圖所示的坐標(biāo)系中畫出P關(guān)于x的函數(shù)圖象的草圖,并標(biāo)出頂點(diǎn)的坐標(biāo);
(4)觀察圖象,說出當(dāng)銷售單價(jià)為多少元時(shí),日銷售的毛利潤最高是多少?

查看答案和解析>>

同步練習(xí)冊答案