(2013•衡陽)如圖,P為正方形ABCD的邊AD上的一個動點,AE⊥BP,CF⊥BP,垂足分別為點E、F,已知AD=4.
(1)試說明AE2+CF2的值是一個常數(shù);
(2)過點P作PM∥FC交CD于點M,點P在何位置時線段DM最長,并求出此時DM的值.
分析:(1)由已知∠AEB=∠BFC=90°,AB=BC,結合∠ABE=∠BCF,證明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16為常數(shù);
(2)設AP=x,則PD=4-x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出關于x的一元二次函數(shù),求出DM的最大值.
解答:解:(1)由已知∠AEB=∠BFC=90°,AB=BC,
又∵∠ABE+∠FBC=∠BCF+∠FBC,
∴∠ABE=∠BCF,
∵在△ABE和△BCF中,
AB=BC
∠ABE=∠BCF
∠AEB=∠BFC

∴△ABE≌△BCF(AAS),
∴AE=BF,
∴AE2+CF2=BF2+CF2=BC2=16為常數(shù);

(2)設AP=x,則PD=4-x,
由已知∠DPM=∠PAE=∠ABP,
∴△PDM∽△BAP,
DM
PD
=
AP
AB
,
DM
4-x
=
x
4

∴DM=
x(4-x)
4
=x-
1
4
x2,
當x=2時,DM有最大值為1.
點評:本題主要考查正方形的性質等知識點,解答本題的關鍵是熟練掌握全等三角形的判定定理以及三角形相似等知識,此題有一定的難度,是一道不錯的中考試題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,在直角△OAB中,∠AOB=30°,將△OAB繞點O逆時針旋轉100°得到△OA1B1,則∠A1OB=
70
70
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,∠1=100°,∠C=70°,則∠A的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,要制作一個母線長為8cm,底面圓周長是12πcm的圓錐形小漏斗,若不計損耗,則所需紙板的面積是
48πcm2
48πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案