【題目】如圖,△ABC中,D是BC上的一點(diǎn),若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.
【答案】解:∵BD2+AD2=62+82=102=AB2 , ∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中, ,
∴S△ABC= ,
因此△ABC的面積為84.
答:△ABC的面積是84
【解析】根據(jù)AB=10,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.
【考點(diǎn)精析】利用勾股定理的概念和勾股定理的逆定理對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,能作出平行四邊形的是( 。
A. 兩組對邊的長分別是3和5
B. 相鄰兩邊的長分別是3和5,且一條對角線長為9
C. 一邊的長為7,兩條對角線的長分別為6和8
D. 一邊的長為7,兩條對角線的長分別為6和5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=﹣ , 則有
①它的圖象在一、三象限:
②點(diǎn)(﹣2,4)在它的圖象上;
③當(dāng)l<x<2時(shí),y的取值范圍是﹣8<y<﹣4;
④若該函數(shù)的圖象上有兩個(gè)點(diǎn)A (x1 , y1),B(x2 , y2),那么當(dāng)x1<x2時(shí),y1<y2
以上敘述正確的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課題組為了解全市九年級學(xué)生對數(shù)學(xué)知識的掌握情況,在一次數(shù)學(xué)檢測中,從全市24000名九年級考生中隨機(jī)抽取部分學(xué)生的數(shù)學(xué)成績進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
x<60 | 20 | 0.10 |
60≤x<70 | 28 | 0.14 |
70≤x<80 | 54 | 0.27 |
80≤x<90 | a | 0.20 |
90≤x<100 | 24 | 0.12 |
100≤x<110 | 18 | b |
110≤x<120 | 16 | 0.08 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中a和b所表示的數(shù)分別為多少;
(2)請?jiān)趫D中,補(bǔ)全頻數(shù)分布直方圖;
(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市24000名九年級考生數(shù)學(xué)成績?yōu)閮?yōu)秀的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDFG周長的最小值為.其中正確判斷的序號是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+k=0.
(1)若方程有實(shí)數(shù)根,求k的取值范圍;
(2)如果k是滿足條件的最大的整數(shù),且方程x2-2x+k=0一根的相反數(shù)是一元二次方程(m-1)x2-3mx-7=0的一個(gè)根,求m的值及這個(gè)方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. ﹣3(a﹣b)=﹣3a﹣b B. ﹣3(a﹣b)=﹣3a+b
C. ﹣3(a﹣b)=﹣3a﹣3b D. ﹣3(a﹣b)=﹣3a+3b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com