【題目】如圖,正方形ABCD中,E為DC邊上一點,且DE=1,AE=EF,∠AEF=90°,則FC= ( )
A. B. C. D. 1
【答案】B
【解析】分析:如圖,過點F作FM⊥DC,交DC的延長線于點M,根據(jù)已知條件證得△ADE≌△EFM,利用全等三角形的性質(zhì)易得FM=CM=1,根據(jù)勾股定理即可求得FC的長.
詳解:
如圖,過點F作FM⊥DC,交DC的延長線于點M,
∵四邊形ABCD為正方形,
∴AD=CD,∠D=90°,
∵∠AEF=90°,
∴∠DAE+∠AED=∠FEM+∠AED=90°,
∴∠DAE =∠FEM,
在△ADE和△EFM中,
,
∴△ADE≌△EFM,
∴DE=FM=1,AD=EM,
∵AD=CD,
∴CD=EM,
∴DE=CM=1.
在Rt△FCM中,根據(jù)勾股定理求得FC=.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)如圖1,點E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C,求證:∠A=∠D.
(2)如圖2,在邊長為1個單位長度的小正方形所組成的網(wǎng)格中,△ABC的頂點均在格點上. ①求sinB的值;
②畫出△ABC關(guān)于直線l對稱的△A1B1C1(A與A1 , B與B1 , C與C1相對應),連接AA1 , BB1 , 并計算梯形AA1B1B的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距O點240米.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,A處受噪音影響的時間為()
A. 秒 B. 16秒 C. 秒 D. 24秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交AC于點M,弦MN∥BC交AB于點E,且ME=1,AM=2,AE=
(1)求證:BC是⊙O的切線;
(2)求 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)a1 , a2 , …,a2017是從1,0,﹣1這三個數(shù)中取值的一列數(shù),若a1+a2+…+a2017=84,(a1+1)2+(a2+1)2+…+(a2017+1)2=4001,則a1 , a2 , …,a2017中為0的個數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com