如圖,AD是⊙O的切線,切點(diǎn)為A,AB是⊙O的弦.過(guò)點(diǎn)B作BC∥AD,交⊙O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD∥AB,交AD于點(diǎn)D.連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線于點(diǎn)P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=9,BC=6.求PC的長(zhǎng).

【答案】分析:(1)過(guò)C點(diǎn)作直徑CE,連接EB,由CE為直徑得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根據(jù)切線的判斷得到結(jié)論;
(2)根據(jù)切線的性質(zhì)得到OA⊥AD,而B(niǎo)C∥AD,則AM⊥BC,根據(jù)垂徑定理有BM=CM=BC=3,根據(jù)等腰三角形性質(zhì)有AC=AB=9,在Rt△AMC中根據(jù)勾股定理計(jì)算出AM=6;
設(shè)⊙O的半徑為r,則OC=r,OM=AM-r=6-r,在Rt△OCM中,根據(jù)勾股定理計(jì)算出r=,則CE=2r=,OM=6-=,利用中位線性質(zhì)得BE=2OM=,然后判斷Rt△PCM∽R(shí)t△CEB,根據(jù)相似比可計(jì)算出PC.
解答:解:(1)PC與圓O相切,理由為:
過(guò)C點(diǎn)作直徑CE,連接EB,如圖,
∵CE為直徑,
∴∠EBC=90°,即∠E+∠BCE=90°,
∵AB∥DC,
∴∠ACD=∠BAC,
∵∠BAC=∠E,∠BCP=∠ACD.
∴∠E=∠BCP,
∴∠BCP+∠BCE=90°,即∠PCE=90°,
∴CE⊥PC,
∴PC與圓O相切;

(2)∵AD是⊙O的切線,切點(diǎn)為A,
∴OA⊥AD,
∵BC∥AD,
∴AM⊥BC,
∴BM=CM=BC=3,
∴AC=AB=9,
在Rt△AMC中,AM==6
設(shè)⊙O的半徑為r,則OC=r,OM=AM-r=6-r,
在Rt△OCM中,OM2+CM2=OC2,即32+(6-r)2=r2,解得r=,
∴CE=2r=,OM=6-=,
∴BE=2OM=,
∵∠E=∠MCP,
∴Rt△PCM∽R(shí)t△CEB,
=,即=,
∴PC=
點(diǎn)評(píng):本題考查了切線的判定與性質(zhì):過(guò)半徑的外端點(diǎn)與半徑垂直的直線為圓的切線;圓的切線垂直于過(guò)切點(diǎn)的半徑.也考查了勾股定理、圓周角定理的推論、三角形相似的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD是圓O的直徑,BC切圓O于點(diǎn)D,AB,AC與圓O相交于點(diǎn)E,F(xiàn).求證:AE•AB=AF•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,ABCD是⊙O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于E,延長(zhǎng)AB和DC相交于E,延長(zhǎng)AD和BC相交于F,EP和FQ分別切⊙O于P、Q.求證:EP2+FQ2=EF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,AB是⊙O的直徑,直線EF切⊙O于點(diǎn)B,點(diǎn)C和點(diǎn)D是⊙O上的兩點(diǎn),若∠CBE=40°,AD=CD,則∠BCD=
115
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,BC切⊙O于B,弦AD∥OC,OC交⊙O于E.
(Ⅰ)求證:CD是⊙O的切線;
(Ⅱ)若BC=4,CE=2.求AB和AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD是半圓O的直徑,AB、CD與半圓O切于點(diǎn)A、D,E為半圓O上一點(diǎn),過(guò)點(diǎn)E的直線交AB于點(diǎn)B,交CD交點(diǎn)C,且CD=CE.
(1)求證:CB是半圓O的切線;
(2)如果AB=4,CD=9,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案