已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過(guò)點(diǎn)B(14,0)和C(0,-8),對(duì)稱軸為x=4.
(1)求該拋物線的解析式;
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)把點(diǎn)B、C的坐標(biāo)代入拋物線解析式,根據(jù)對(duì)稱軸解析式列出關(guān)于a、b、c的方程組,求解即可;
(2)根據(jù)拋物線解析式求出點(diǎn)A的坐標(biāo),再利用勾股定理列式求出AC的長(zhǎng),然后求出OD,可得點(diǎn)D在拋物線對(duì)稱軸上,根據(jù)線段垂直平分線上的性質(zhì)可得∠PDC=∠QDC,PD=DQ,再根據(jù)等邊對(duì)等角可得∠PDC=∠ACD,從而得到∠QDC=∠ACD,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得PQ∥AC,再根據(jù)點(diǎn)D在對(duì)稱軸上判斷出DQ是△ABC的中位線,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出DQ=AC,再求出AP,然后根據(jù)時(shí)間=路程÷速度求出點(diǎn)P運(yùn)動(dòng)的時(shí)間t,根據(jù)勾股定理求出BC,然后求出CQ,根據(jù)速度=路程÷時(shí)間,計(jì)算即可求出點(diǎn)Q的速度.
解答:解:(1)∵圖象經(jīng)過(guò)點(diǎn)B(14,0)和C(0,-8),對(duì)稱軸為x=4,

解得,
∴拋物線的解析式為y=x2-x-8;

(2)存在直線CD垂直平分PQ.
理由如下:令y=0,則x2-x-8=0,
整理得,x2-8x-84=0,
解得x1=-6,x2=14(為點(diǎn)B坐標(biāo)),
∴點(diǎn)A的坐標(biāo)為(-6,0),
在Rt△AOC中,AC===10,
∴OD=AD-AO=AC-AO=10-6=4,
∴點(diǎn)D在二次函數(shù)的對(duì)稱軸上,
∵直線CD垂直平分PQ,
∴∠PDC=∠QDC,PD=DQ,
又∵AD=AC,
∴∠PDC=∠ACD,
∴∠QDC=∠ACD,
∴DQ∥AC,
∴DQ是△ABC的中位線,
∴DQ=AC=×10=5,
∴AP=AD-PD=AC-DQ=10-5=5,
∵動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),
∴t=5÷1=5,
∴存在t=5(秒)時(shí),線段PQ被直線CD垂直平分,
此時(shí),在Rt△BOC中,BC===2,
∵DQ是△ABC的中位線,
∴CQ=BC=×2=,
∴點(diǎn)Q的運(yùn)動(dòng)速度為每秒單位長(zhǎng)度.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了待定系數(shù)法求二次函數(shù)解析式,線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),勾股定理,等邊對(duì)等角的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,(2)求出DQ∥AC是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案