如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點E,EF⊥AB于點F,EF交BD于點G,設(shè)AD=a,BC=b.
(1)求CD的長度(用a,b表示);
(2)求EG的長度(用a,b表示);
(3)試判斷EG與FG是否相等,并說明理由.
【答案】分析:(1)由AB為半圓的直徑,∠DAB=∠ABC=90°,根據(jù)切線的判定方法得到DA、BC為半圓O的切線,而CD與以AB為直徑的半圓相切于點E,根據(jù)切線長定理得到DE=DA=a,CE=CB=b,即有CD=a+b;
(2)易得EG∥BC,根據(jù)平行線分線段成比例定理有EG:BC=DE:DC,即EG:b=a:(a+b),即可表示出EG=;
(3)由EG∥BC,根據(jù)平行線分線段成比例定理=,即=,由GF∥AD得到=,即=,則+=+=1,然后把EG=代入計算即可得到FG=,即可得到EG=FG.
解答:解:(1)∵AB為半圓的直徑,∠DAB=∠ABC=90°,
∴DA、BC為半圓O的切線,
又∵CD與以AB為直徑的半圓相切于點E,
∴DE=DA=a,CE=CB=b,
∴CD=a+b;
(2)∵EF⊥AB,
∴EG∥BC,
∴EG:BC=DE:DC,即EG:b=a:(a+b),
∴EG=
(3)EG與FG相等.理由如下:
∵EG∥BC,
=,即=①,
又∵GF∥AD,
=,即=②,
①+②得+=+=1,
而EG=,
+=1,
∴FG=
∴EG=FG.
點評:本題考查了圓的綜合題:過半徑的外端點與半徑垂直的直線是圓的切線;掌握圓的切線長定理;運用平行線分線段成比例定理進(jìn)行線段之間的轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案