甲、乙兩車從A地出發(fā),沿同一條高速公路行駛至距A地400千米的B地.l1,l2分別表示甲、乙兩車行駛路程y(千米)與時間x(時)之間的關系(如圖所示).根據(jù)圖象提供的信息,解答下列問題:
(1)求l2的函數(shù)表達式(不要求寫出x的取值范圍);
(2)甲、乙兩車哪一輛先到達B地該車比另一輛車早多長時間到達B地?
(1)設L2的函數(shù)表達式是y=k2x+b,
0=
3
4
k2+b
400=
19
4
k2+b

解之得k2=100,b=-75,
∴L2的函數(shù)表達式為y=100x-75.

(2)由圖可知,乙先到達B地.
∵300=100x-75,
∴x=3.75.
設l1的函數(shù)表達式是y=k1x.
∵該函數(shù)過點(3.75,300),
∴k1=80,即y=80x.
當y=400時,400=80x,
∴x=5.
∴5-4
3
4
=
1
4
(小時)
∴乙車比甲車早
1
4
小時到達B地.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在梯形ABCO中,OCAB,以O為原點建立平面直角坐標系,A、B、C三點的坐標分別是A(8,0),B(8,10),C(0,4).點D(4,7)為線段BC的中點,動點P從O點出發(fā),以每秒1個單位的速度,沿折線OAB的路線運動,運動時間為t秒.
(1)求直線BC的解析式;
(2)設△OPD的面積為s,求出s與t的函數(shù)關系式,并指出自變量t的取值范圍;
(3)當t為何值時,△OPD的面積是梯形OABC的面積的
3
8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)圖象如圖所示.填空第(1)小題并解答第(2)、(3)小題
(1)第20天的總用水量為______.
(2)當x≥20時,求y與x之間的函數(shù)關系式.
(3)時間為多少天時,總用水量達到70003

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b與y軸的交點坐標為A(0,1),與x軸的交點坐標為B(-3,0);P、Q分別是x軸和直線AB上的一動點,在運動過程中,始終保持QA=QP;△APQ沿直線PQ翻折得到△CPQ,A點的對稱點是點C.
(1)求直線AB的解析式.
(2)是否存在點P,使得點C恰好落在直線AB上?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小丁每天從某報社以每份0.5元買進報紙200份,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.
(1)求y與x之間的函數(shù)關系式(要求寫出自變量x的取值范圍);
(2)如果每月以30天計算,小丁每天至少要賣多少份報紙才能保證每月收入不低于2000元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,某地區(qū)對某種藥品的需求量y1(萬件),供應量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關系式:y1=-x+70,y2=2x-38,需求量為0時,即停止供應.當y1=y2時,該藥品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該藥品的穩(wěn)定價格與穩(wěn)定需求量.
(2)價格在什么范圍內(nèi),該藥品的需求量低于供應量?
(3)由于該地區(qū)突發(fā)疫情,政府部門決定對藥品供應方提供價格補貼來提高供貨價格,以利提高供應量.根據(jù)調(diào)查統(tǒng)計,需將穩(wěn)定需求量增加6萬件,政府應對每件藥品提供多少元補貼,才能使供應量等于需求量?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(北師大版)如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為
2
-1,直線a:y=-x-
2
與坐標軸分別交于A,C兩點,點B的坐標為(4,1),⊙B與X軸相切于點M.
(1)求點A的坐標及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿x軸負方向平移,同時,直線a繞點A順時針勻速旋轉.當⊙B第一次與⊙O相切時,直線a也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉多少度;
(3)如圖2,過A,O,C三點作⊙O1,點E是劣弧
AO
上一點,連接EC,EA.EO,當點E在劣弧
AO
上運動時(不與A,O兩點重合),
EC-EA
EO
的值是否發(fā)生變化?如果不變,求其值;如果變化,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有甲、乙兩家通訊公司,甲公司每月通話(不分通話地點)的收費標準如圖所示;乙公司每月通話的收費標準如圖所示:
乙公司每月的收費標準
月租費本市接聽費本市接打費外市通話費
50元0元/分0.10元/分0.90元/分
(1)觀察圖1,寫出甲公司用戶月通話時間不超過400分鐘時應付的話費金額;
(2)求出甲公司的用戶超過400分鐘后,通話費用y(元)與通話時間t(分)之間的函數(shù)關系式;(寫出解題過程)
(3)王先生由于工作需要,從4月份開始經(jīng)常外市出差,估計每月各種通話時間的比例是,本地接聽時間:本地撥打時間:外地通話時間=2:1:1,設王先生每月的各種通話時間總和為t(分),通話費用為y(元).你認為t為多少分鐘時,乙公司和甲公司的收費一樣多?請用計算方法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點.平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,設運動時間為t秒(0<t≤4).
(1)求A、B兩點的坐標;
(2)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S1,在直線m的運動過程中,當t為何值時,S1為△OAB面積的
5
16
?

查看答案和解析>>

同步練習冊答案