函數(shù)y =ax²(a≠0)與直線y =2x-3的圖像交于點(1,b).
求:(1)a和b的值;
(2)求拋物線y =ax²的開口方向、對稱軸、頂點坐標(biāo)。
(1) a=-1,b=-1;(2)開口向下,對稱軸為y軸,頂點坐標(biāo)為(0,0).
解析試題分析:(1)將點(1,b)代入直線y=2x-3中可求b,再代入y=ax2中可求a;
(2)根據(jù)a的符號判斷y=ax2開口方向,對稱軸為y軸,頂點坐標(biāo)為(0,0);
(1)把(1,b)代入直線y=2x-3中,得b=2-3=-1,
把點(1,-1)代入y=ax2中,得a=-1;
(2)∵y=-x2中,a=-1,拋物線開口向下,對稱軸為y軸,頂點坐標(biāo)為(0,0);
考點:1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)的圖象;3.二次函數(shù)的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸交于點、C,與y軸交于點B(0,3),拋物線的頂點為p。
(1)求拋物線的解析式;
(2)若拋物線向下平移k個單位后經(jīng)過點(-5,6)。
①求k的值及平移后拋物線所對應(yīng)函數(shù)的最小值;
②設(shè)平移后拋物線與y軸交于點D,頂點為Q,點M是平移后的拋物線上的一個動點。請?zhí)骄浚寒?dāng)點M在何處時,△MBD的而積是△MPQ面積的2倍?求出此時點M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某賓館有30個房間供游客住宿,當(dāng)每個房間的房價為每天120元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系中,拋物線交軸于A、B兩點(點A在點B左側(cè)),與軸交于點C,點A、C的坐標(biāo)分別為(-3,0),(0,3),對稱軸直線交軸于點E,點D為頂點.
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一點,且,,求點P的坐標(biāo);
(3)點M是第一象限內(nèi)拋物線上一點,且∠MAC=∠ADE,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)第xoy中,A點的坐標(biāo)為(0,5).B、C分別是x軸、y軸上的兩個動點,C從A出發(fā),沿y軸負半軸方向以1個單位/秒的速度向點O運動,點B從O出發(fā),沿x軸正半軸方向以1個單位/秒的速度運動.設(shè)運動時間為t秒,點D是線段OB上一點,且BD=OC.點E是第一象限內(nèi)一點,且AEDB.
(1)當(dāng)t=4秒時,求過E、D、B三點的拋物線解析式.
(2)當(dāng)0<t<5時,(如圖甲),∠ECB的大小是否隨著C、B的變化而變化?如果不變,求出它的大。
(3)求證:∠APC=45°
(4)當(dāng)t>5時,(如圖乙)∠APC的大小還是45°嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知,等邊△ABC邊長為6,P為BC邊上一點,且BP=4,點E、F分別在邊AB、AC上,且∠EPF=60°,設(shè)BE=x,CF=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)①若四邊形AEPF的面積為時,求x的值.
②四邊形AEPF的面積是否存在最大值?若存在,請求出面積的最大值及此時x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過B、C兩點.
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標(biāo).
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點M,過M作MG軸于點G,使以A、M、G三點為頂點的三角形與PCA相似.若存在,請求出M點的坐標(biāo);否則,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com