如圖所示,在直角梯形ABCD中,ADBC,AD=24cm,AB=8cm,BC=26cm,動(dòng)點(diǎn)P從A點(diǎn)開始沿AD邊向D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)開始沿CB邊向B以3cm/s的速度運(yùn)動(dòng).P,Q分別從A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),t分別為何值時(shí),四邊形PQCD是平行四邊形?等腰梯形?
(1)∵ADBC,
∴當(dāng)QC=PD時(shí),四邊形PQCD是平行四邊形.
此時(shí)有3t=24-t,解得t=6.
∴當(dāng)t=6s時(shí),四邊形PQCD是平行四邊形.

(2)∵ADBC,
∴當(dāng)PQ=CD,PD≠Q(mào)C時(shí),
四邊形PQCD為等腰梯形.
過P,D分別作PE⊥BC,DF⊥BC,垂足分別為E,F(xiàn).
∴四邊形ABFD是矩形,四邊形PEFD是矩形.
∴EF=PD,BF=AD.
∵AD=24cm,
∴BF=24cm.
∵BC=26cm.
∴FC=BC-BF=26-24=2(cm).
由等腰梯形的性質(zhì)知,QE=FC=2cm.
∴QC=EF+QE+FC=PD+4=AD-AP+4,
即3t=(24-t)+4,解得t=7.
∴當(dāng)t=7時(shí),四邊形PQCD是等腰梯形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQCD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,E為BC的中點(diǎn),BC=2AD,EA=ED=2,AC與ED相交于點(diǎn)F.
(1)求證:梯形ABCD是等腰梯形;
(2)當(dāng)AB與AC具有什么位置關(guān)系時(shí),四邊形AECD是菱形?請(qǐng)說明理由,并求出此時(shí)菱形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等腰梯形的上底長(zhǎng)為2,下底長(zhǎng)為10,高為3,則它的腰長(zhǎng)為( 。
A.4B.5C.7D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在梯形ABCD中,ADBC,AB=3,AD=1,CD=4,∠B=50°,∠C=40°,則BC的長(zhǎng)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角梯形ABCD中,ADBC,∠ABC=90°,∠C=60°,BC=2AD=2,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

梯形的面積被一條對(duì)角線分成1:2兩部分,則梯形的中位線分梯形的兩部分面積之比為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,AB=2,AD=4,tanC=
4
3
,∠ADC=∠DAB=90°,P是腰BC上一個(gè)動(dòng)點(diǎn)(不含點(diǎn)B、C),作PQ⊥AP交CD于點(diǎn)Q.(圖1)
(1)求BC的長(zhǎng)與梯形ABCD的面積;
(2)當(dāng)PQ=DQ時(shí),求BP的長(zhǎng);(圖2)
(3)設(shè)BP=x,CQ=y,試求y關(guān)于x的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形中,面積最大的是( 。
A.邊長(zhǎng)為
3
cm的正方形
B.一組鄰邊的長(zhǎng)分別是1cm、3cm的平行四邊形
C.對(duì)角線長(zhǎng)分別為4cm和1cm的菱形
D.中位線長(zhǎng)為2cm,高為2cm的梯形

查看答案和解析>>

同步練習(xí)冊(cè)答案