【題目】解方程.
(1)(x﹣1)2=4;
(2)x2+3x﹣4=0;
(3)4x(2x+1)=3(2x+1);
(4)2x2+5x﹣3=0.

【答案】
(1)解:x﹣1=±2,即x﹣1=2或x﹣1=﹣2,

解得:x1=﹣1,x2=3


(2)解:因式分解可得:(x﹣1)(x+4)=0,

∴x﹣1=0或x+4=0,

解得:x1=﹣4,x2=1


(3)解:4x(2x+1)﹣3(2x+1)=0,

(2x+1)(4x﹣3)=0,

∴2x+1=0或4x﹣3=0,

解得:x=﹣ 或x=


(4)解:因式分解可得(x+3)(2x﹣1)=0,

∴x+3=或2x﹣1=0,

解得:x= 或x=﹣3


【解析】(1)直接開平方法求解可得;(2)因式分解法求解可得;(3)因式分解法求解可得;(4)十字相乘法因式分解可得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直接開平方法的相關(guān)知識,掌握方程沒有一次項(xiàng),直接開方最理想.如果缺少常數(shù)項(xiàng),因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方,以及對因式分解法的理解,了解已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A,B,O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,AB=6,BAC=45°,BAC的平分線交BC于點(diǎn)D,M,N分別是ADAB上的動(dòng)點(diǎn),則BM+MN的最小值是 ( )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求點(diǎn)A,點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)在拋物線的對稱軸上有一動(dòng)點(diǎn)P,求PB+PC的值最小時(shí)的點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M是直線AC下方拋物線上一動(dòng)點(diǎn),求四邊形ABCM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了估算河的寬度,我們可以在河對岸選定一個(gè)目標(biāo)作為點(diǎn)A,再在河的這一邊選定點(diǎn)B和C,使AB⊥BC,然后,再選點(diǎn)E,使EC⊥BC,用視線確定BC和AE的交點(diǎn)D.此時(shí)如果測得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于下列各組條件,不能判定≌△的一組是

A. A=A′,B=B′AB=A′B′

B. A=A′,AB=A′B′,AC=A′C′

C. A=A′AB=A′B′,BC=B′C′

D. AB=A′B′AC=A′C′,BC=B′C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,P為等邊△ABC內(nèi)一點(diǎn),∠APB=113°,∠APC=123°,試說明:以AP,BP,CP為邊長可以構(gòu)成一個(gè)三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)

(1)寫出點(diǎn)A、B的坐標(biāo):A(     )、B(   ,   

(2)將ABC先向左平移1個(gè)單位長度,再向上平移2個(gè)單位長度,得到A′B′C′,畫出A′B′C′

(3)寫出三個(gè)頂點(diǎn)坐標(biāo)A′(   、   )、B′(    、   )、C′ (    、   

(4)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案