【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
【答案】(1)見解析;(2)繼續(xù)剪
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)、等腰三角形的性質(zhì),利用全等三角形的判定定理SAS可以證得△ADC≌△ECD;
(2)利用等腰三角形的“三合一”性質(zhì)推知AD⊥BC,即∠ADC=90°;由平行四邊形的判定定理(對邊平行且相等是四邊形是平行四邊形)證得四邊形ADCE是平行四邊形,所以有一個角是直角的平行四邊形是矩形.
證明:(1)∵四邊形ABDE是平行四邊形(已知),
∴AB∥DE,AB=DE(平行四邊形的對邊平行且相等);
∴∠B=∠EDC(兩直線平行,同位角相等);
又∵AB=AC(已知),
∴AC=DE(等量代換),∠B=∠ACB(等邊對等角),
∴∠EDC=∠ACD(等量代換);
∵在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS);
(2)∵四邊形ABDE是平行四邊形(已知),
∴BD∥AE,BD=AE(平行四邊形的對邊平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD(等量代換),
∴四邊形ADCE是平行四邊形(對邊平行且相等的四邊形是平行四邊形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC(等腰三角形的“三合一”性質(zhì)),
∴∠ADC=90°,
∴ADCE是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,ABCD的對角線AC,BD交于點O,直線EF過點O,分別交AD,BC于點E,F(xiàn).求證:AE=CF.
(2)如圖②,將ABCD(紙片)沿過對角線交點O的直線EF折疊,點A落在點A1處,點B落在點B1處,設(shè)FB1交CD于點G,A1B1分別交CD,DE于點H,I.求證:EI=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣kx﹣6=0的一個根為x=3,則實數(shù)k的值為( )
A.1 B.﹣1 C.2 D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以O(shè)A1對角線為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA1A2B1,…,依此規(guī)律,則點A8的坐標(biāo)是( )
A.(﹣8,0) B.(0,8) C.(0,8) D.(0,16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是( )
A. 拋擲一枚硬幣四次,有二次正面朝上 B. 打開電視頻道,正在播放《我是歌手》
C. 射擊運動員射擊一次,命中十環(huán) D. 方程x2-2x-1=0必有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的周長為17cm,其中一邊長為7cm,則該等腰三角形的底邊長為( 。
A. 3cm B. 3cm或5cm C. 3cm或7cm D. 7cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com