【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.

(1)AB的長等于
(2)在△ABC的內部有一點P,滿足SPAB:SPBC:SPCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)

【答案】
(1)
(2)

如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求


【解析】解:(1)AB= =
所以答案是 .(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.

理由:平行四邊形ABME的面積:平行四邊形CDNB:平行四邊形DEMG=1:2:3,
△PAB的面積= 平行四邊形ABME的面積,△PBC的面積= 平行四邊形CDNB的面積,△PAC的面積=△PNG的面積= △DGN的面積= 平行四邊形DEMG的面積,
∴SPAB:SPBC:SPCA=1:2:3.
【考點精析】認真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動:拼圖中的數(shù)學 數(shù)學活動課上,老師提出如下問題:
用5個邊長為1的小正方形組合一個圖形(相互之間不能重疊),然后將組合后的圖形剪拼成一個大的正方形.
合作交流:“實踐”小組:我們組合成的圖形如圖(1)所示,剪拼成大的正形的過程如圖(2),圖(3)所示.“興趣”小組:我們組合成的圖形如圖(4)所示,但我們未能將其剪拼成大的正方形.
任務:請你幫助“興趣”小組的同學,在圖(4)中畫出剪拼線,在圖(5)中畫出剪拼后的正方形.要求:剪拼線用虛線表示,剪拼后的大正方形用實線表示.

應用遷移:如圖(6),∠A=∠B=∠C=∠D=∠F=90°,AB=AF=2,EF=ED=1.
請你將該圖進行分割,使得分割后的各部分恰好能拼成一個正方形,請你在圖(5)中畫出拼圖示意圖(拼圖的各部分不能互相重疊,不能留有空隙,不要求進行說理或證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD內接于點O,點E是 上的一動點(不與A、B重合),點F是 上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結論,其中正確的個數(shù)是( ). ① = ; ②△OGH是等腰三角形; ③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+ .


A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉60°,得到正方形DE′F′G′,此時點G′在AC上,連接CE′,則CE′+CG′=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“蘭州中山橋“位于蘭州濱河路中段白塔山下、金城關前,是黃河上第一座真正意義上的橋梁,有“天下黃河第一橋“之美譽.它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用A4紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數(shù)不超過20時,每頁收費0.12元;一次復印頁數(shù)超過20時,超過部分每頁收費0.09元. 設在同一家復印店一次復印文件的頁數(shù)為x(x為非負整數(shù)).
(1)根據(jù)題意,填寫下表:

一次復印頁數(shù)(頁)

5

10

20

30

甲復印店收費(元)

0.5

2

乙復印店收費(元)

0.6

2.4


(2)設在甲復印店復印收費y1元,在乙復印店復印收費y2元,分別寫出y1 , y2關于x的函數(shù)關系式;
(3)當x>70時,顧客在哪家復印店復印花費少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過銳角△ABC的頂點A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長線于點F.在AF上取點M,使得AM= AF,連接CM并延長交直線DE于點H.若AC=2,△AMH的面積是 ,則 的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD的外側,作等邊△ADE,則∠BED的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長AB、DC交于點E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案