【題目】201944日,中國國際女足錦標(biāo)賽半決賽在武漢進行,這場由中國隊迎戰(zhàn)俄羅斯隊的比賽牽動著眾多足球愛好者的心.在未開始檢票入場前,已有1200名足球愛好者排隊等待入場.假設(shè)檢票開始后,每分鐘趕來的足球愛好者人數(shù)是固定的,1個檢票口每分鐘可以進入40人.如果4個檢票口同時檢票,15分鐘后排隊現(xiàn)象消失;如果7個檢票口同時檢票,_____分鐘后排隊現(xiàn)象消失.

【答案】6

【解析】

設(shè)每分鐘每分鐘趕來的足球愛好者人數(shù)為人,由4個檢票口同時檢票,15分鐘后排隊現(xiàn)象消失,列出方程,可求每分鐘每分鐘趕來的足球愛好者人數(shù),再設(shè)7個檢票口同時檢票,分鐘排隊現(xiàn)象消失,7個檢票口同時檢票,分鐘排隊現(xiàn)象消失,列出方程,可求解.

解:設(shè)每分鐘每分鐘趕來的足球愛好者人數(shù)為人,

由題意可得:,

每分鐘每分鐘趕來的足球愛好者人數(shù)為80人,

設(shè)7個檢票口同時檢票,分鐘排隊現(xiàn)象消失,

由題意可得:

答:7個檢票口同時檢票,6分鐘排隊現(xiàn)象消失,

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,DAB邊上任意一點,DF∥ACBCF,AE∥BC,∠CDE=ABC=∠ACB=α,

(1)如圖1所示,當(dāng)α=60°,求證:△DCE是等邊三角形;

(2)如圖2所示,當(dāng)α=45°,求證=;

(3)如圖3所示,當(dāng)α為任意銳角時請直接寫出線段CEDE的數(shù)量關(guān)系_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先尺規(guī)作圖,后進行計算:如圖,△ABC中,∠A105°.

1)試求作一點P,使得點PB、C兩點的距離相等,并且到∠ABC兩邊的距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).

2)在(1)的條件下,若∠ACP30°,則∠PBC的度數(shù)為   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.

(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?

(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B,F,CE在同一直線上,AC,DF相交于點G,且△ABC≌△DEF

(1)若△ABC的周長為12cm,AB=3cmBC=4cm,求DF的長.

(2)DEBC與點E,∠A65°,求∠AGF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為邊作△CDE,其中CD=CE,∠DCE=90°,連接BE

(1)求證:△ACD≌△BCE.

(2)AB=6cm,則BE=______cm

(3)BEAD有何位置關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數(shù),每邊上相鄰釘子間的距離為1),連接任意兩個釘子所得到的不同長度值的線段種數(shù):

當(dāng)n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數(shù),則S=2;

當(dāng)n=3時,釘子板上所連不同線段的長度值只有1, ,2, ,2五種,比n=2時增加了3種,即S=2+3=5.

(1)觀察圖形,填寫下表:

釘子數(shù)(n×n)

S值

2×2

2

3×3

2+3

4×4

2+3+____

5×5

________

(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數(shù)之間的關(guān)系;(用式子或語言表述均可).

(3)對n×n的釘子板,寫出用n表示S的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx2與拋物線yax2bx6(a≠0)相交于點A(, ),B(4,m),點P是線段AB上異于A,B的動點,過點PPCx軸于點D,交拋物線于點C.

(1)求拋物線的解析式;

(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點E,則圖中共有全等三角形的對數(shù)( 。

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

同步練習(xí)冊答案