【題目】如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.
(1)線段AE=______;
(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑.
【答案】(1)5;(2);(3)時(shí),半徑PF=;t=16,半徑PF=12.
【解析】
(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;
(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得
(1)∵四邊形ABCD為矩形,
∴BC=AD=5,
∵BE∶CE=3∶2,
則BE=3,CE=2,
∴AE===5.
(2)如圖1,
當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,
∵PF∥BE,
∴=,即=,
∴AF=t,
則EF=AE-AF=5-t,即y=5-t(0≤t≤4);
如圖2,
當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,
此時(shí),EF=AF-AE=t-5,即y=t-5(t>4);
綜上,;
(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=FG,分以下三種情況:
①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;
②當(dāng)0<t<4時(shí),如解圖1,作FG⊥BC于點(diǎn)G,
則FG=BP=4-t,
∵PF∥BC,
∴△APF∽△ABE,
∴=,即=,
∴PF=t,
由4-t=t可得t=,
則此時(shí)⊙F的半徑PF=;
③當(dāng)t>4時(shí),如解圖2,同理可得FG=t-4,PF=t,
由t-4=t可得t=16,
則此時(shí)⊙F的半徑PF=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長交CB的延長線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E,過點(diǎn)E作EF⊥AB,垂足為F,連接FD.
(1)求證:DE是⊙O的切線;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把長方形OABC放在如圖所示的平面直角坐標(biāo)系中,點(diǎn)F、E分別在邊OA和AB上,若點(diǎn)F (0,3),點(diǎn)C (9,0),且∠FEC=90°,EF=EC,則點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:如圖,AB⊥BC,射線CM⊥BC,且BC=5cm,AB=1cm,點(diǎn)P是線段BC(不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過點(diǎn)P作DP⊥AP交射線CM于點(diǎn)D,連結(jié)AD.
(1)如圖1,若BP=4cm,則CD= ;
(2)如圖2,若DP平分∠ADC,試猜測(cè)PB和PC的數(shù)量關(guān)系,并說明理由;
(3)若△PDC是等腰三角形,則CD= cm.(請(qǐng)直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶葉公司經(jīng)銷一種茶葉,每千克成本為元,市場(chǎng)調(diào)查發(fā)現(xiàn)在一段時(shí)間內(nèi),銷量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具有關(guān)系為:,物價(jià)部門規(guī)定每千克的利潤不得超過元.設(shè)這種茶葉在這段時(shí)間內(nèi)的銷售利潤(元),解答下列問題:
求與的關(guān)系式;
當(dāng)取何值時(shí),的值最大?并求出最大值;
當(dāng)銷售利潤的值最大時(shí),銷售額也是最大嗎?判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,則下列四個(gè)結(jié)論中:
①線段AD上任意一點(diǎn)到點(diǎn)B的距離與到點(diǎn)C的距離相等;
②線段AD上任意一點(diǎn)到AB的距離與到AC的距離相等;
③若點(diǎn)Q是線段AD的三等分點(diǎn) ,則△ACQ的面積是△ABC面積的;
④若,則;
正確結(jié)論的序號(hào)是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com