(2011湖南衡陽(yáng),16,3分)如圖,⊙的直徑過(guò)弦的中點(diǎn)G,∠EOD=40°,則∠FCD的度數(shù)為     
20
分析:根據(jù)垂徑定理得出弧DE等于弧DF,再利用圓周角定理得出∠FCD=20°.
解答:解:∵⊙O的直徑CD過(guò)弦EF的中點(diǎn)G,
=
∴∠DCF=∠EOD,
∵∠EOD=40°,
∴∠FCD=20°,
故答案為:20°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•廣州)如圖1,⊙O中AB是直徑,C是⊙O上一點(diǎn),∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,點(diǎn)D在線(xiàn)段AC上.
(1)證明:B、C、E三點(diǎn)共線(xiàn);
(2)若M是線(xiàn)段BE的中點(diǎn),N是線(xiàn)段AD的中點(diǎn),證明:MN=OM;
(3)將△DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)后,記為△D1CE1(圖2),若M1是線(xiàn)段BE1的中點(diǎn),N1是線(xiàn)段AD1的中點(diǎn),M1N1=OM1是否成立?若是,請(qǐng)證明;若不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某商標(biāo)是由邊長(zhǎng)均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個(gè)鑲嵌圖案中一個(gè)正三角形的面積;
(2)如果在這個(gè)鑲嵌圖案中隨機(jī)確定一個(gè)點(diǎn)O,那么點(diǎn)O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(11·湖州)(本小題8分)
如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2。
⑴求OE和CD的長(zhǎng);
⑵求圖中陰影部隊(duì)的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011貴州安順,8,3分)在RtABC中,斜邊AB =4,∠B= 60°,將△ABC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,頂點(diǎn)C運(yùn)動(dòng)的路線(xiàn)長(zhǎng)是(     )
A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2007•連云港)如圖,將半徑為2cm的圓形紙片折疊后,圓弧恰好經(jīng)過(guò)圓心O,則折痕AB的長(zhǎng)為( 。
A.2cmB.cmC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,⊙Px軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),
AB=
(1)求⊙P的半徑.(4分)
(2)將⊙P向下平移,求⊙Px軸相切時(shí)平移的距離.(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011•泰安)如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是優(yōu)弧CBA上一點(diǎn),若∠ABC=32°,則∠P的度數(shù)為_(kāi)_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(11·西寧)(本小題滿(mǎn)分10分)已知:如圖,BD為⊙O的直徑,ABAC,ADBCE,AE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長(zhǎng);
(3)延長(zhǎng)DBF,使BFOB,連接FA,試判斷直線(xiàn)FA與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案