【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶(hù)利用水庫(kù)的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為米的圍網(wǎng)在水庫(kù)中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)的長(zhǎng)度為米,矩形區(qū)域的面積為米.
求證:;
求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
為何值時(shí),有最大值?最大值是多少?
【答案】(1)見(jiàn)解析;(2)y=;(3)當(dāng)時(shí),有最大值,最大值為平方米
【解析】
(1)根據(jù)三個(gè)矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE=2BE;
(2)設(shè)BE=a,則有AE=2a,表示出a與2a,進(jìn)而表示出y與x的關(guān)系式,并求出x的范圍即可;
(3)利用二次函數(shù)的性質(zhì)求出y的最大值,以及此時(shí)x的值即可.
解:∵三塊矩形區(qū)域的面積相等,
∴矩形面積是矩形面積的倍,
又∵是公共邊,
∴;
設(shè),則,
∴,
∴,,
∴,
∵,
∴,
∴
∵,且二次項(xiàng)系數(shù)為,
∴當(dāng)時(shí),有最大值,最大值為平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=90°,AB=4,BC=3,CD=12,AD=13.求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點(diǎn)為N,在x軸上找一點(diǎn)K,使CK+KN最小,并求出點(diǎn)K的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點(diǎn)D,點(diǎn)E,BE、CD相交于點(diǎn)O.∠1=∠2,則圖中全等三角形共有( )
A. 4對(duì)B. 3對(duì)C. 2對(duì)D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的部分圖像如圖所示,圖像過(guò)點(diǎn),對(duì)稱(chēng)軸為直線,下列結(jié)論:(1);(2);(3)若點(diǎn)、點(diǎn)、點(diǎn)在該函數(shù)圖像上,則;(4)若方程的兩根為和,且,則.其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D,E是BC邊上的兩點(diǎn),AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,則∠CAE的度數(shù)為( )
A.10°B.20°
C.30°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6,B′是邊AC上一點(diǎn).將三角形紙片折疊,使點(diǎn)B與點(diǎn)B′重合,折痕與BC、AB分別相交于E、F.設(shè)BE=x,
(1)若x=4,求B′C的長(zhǎng);
(2)當(dāng)△AFB′是直角三角形時(shí),求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com