如圖所示,⊙O的直徑AB垂直于弦CD,AB、CD相交于點E,∠COD=100°,求∠COE,∠D的度數(shù).

【答案】分析:在等腰△OCD中,OE⊥CD,根據(jù)等腰三角形三線合一的性質(zhì)可知:OE必為頂角∠COD的角平分線;則∠EOD=∠COE=50°;進而可在Rt△OED中,求出∠D的度數(shù).
解答:解:在△OCD中,OC=OD,OE⊥CD,
∴OE平分∠COD,又∠COD=100°,
∴∠COE=∠DOE=∠COD=50°,
則在Rt△OED中,∠D=90°-∠DOE=90°-50°=40°.
點評:本題考查的直角三角形的性質(zhì)以及等腰三角形的性質(zhì):等腰三角形中,底邊上的高線、底邊上的中線、頂角平分線互相重合.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,⊙O的直徑AB=4,點P是AB延長線上的一點,過P點作⊙O的切線,切點精英家教網(wǎng)為C,連接AC.
(1)若∠CPA=30°,求PC的長;
(2)若點P在AB的延長線上運動,∠CPA的平分線交AC于點M,你認為∠CMP的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出∠CMP的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,⊙O的直徑AB=2,AD,BC是它的兩條切線,且CD與⊙O相切于點E,交AD,BC于精英家教網(wǎng)點D,C,設(shè)AD=x,BC=y.
(1)求證:AD+BC=CD;
(2)求y關(guān)于x的函數(shù)關(guān)系,并畫去它的圖象;
(3)若x,y是方程2t2-5t+m=0的兩根,求x,y的值;
(4)求四邊形的ABCD的面積S,(用字母表示)并證明S≥2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑AB垂直于弦CD,AB、CD相交于點E,∠COD=100°,求∠COE,∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑的長是關(guān)于x的二次方程x2+2(k-2)x+k=0(k是整數(shù))的最大整數(shù)根. P是⊙O外一點,過點P作⊙O的切線PA和割線PBC,其中A為切點,點B,C是直線PBC與⊙O的交點.若PA,PB,PC的長都是正整數(shù),且PB的長不是合數(shù),求PA2+PB2+PC2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,⊙O的直徑AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求圓心O到CD的距離.

查看答案和解析>>

同步練習冊答案