【題目】拋物線yax2+bx+ca0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(diǎn)(x1,y1),(x2,y2)在拋物線上若x1x2,則y1y2;a+b+c0.正確結(jié)論的個(gè)數(shù)是( 。

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)函數(shù)與x軸交點(diǎn)的個(gè)數(shù)以及對(duì)稱軸的解析式和函數(shù)的增減性進(jìn)行判斷即可。

函數(shù)的對(duì)稱軸是x=﹣1,即=﹣1,則b2a,2ab0,故本選項(xiàng)正確;

函數(shù)與x軸有兩個(gè)交點(diǎn),則b24ac0,即4acb20,故本選項(xiàng)正確;

因?yàn)椴恢傈c(diǎn)(x1y1),(x2,y2)在拋物線上所處的位置,所以y1y2的大小無(wú)法判斷,則本選項(xiàng)錯(cuò)誤.

∵(﹣3,0)關(guān)于直線x=﹣1的對(duì)稱點(diǎn)是(1,0),且當(dāng)x=﹣3時(shí),y0

∴當(dāng)x1時(shí),函數(shù)對(duì)應(yīng)的點(diǎn)在x軸下方,則a+b+c0,則本選項(xiàng)正確;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB于點(diǎn)E

1)如圖①,若CD8,BE2,求⊙O的半徑;

(2)如圖②,點(diǎn)G上一點(diǎn),AG的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)F,求證:∠AGD=∠FGC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BECD相交于點(diǎn)F.

(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);

(2)如圖2,若AC=AD,求證:EF=FB;

(3)如圖3,在(2)的條件下,若∠CFE=45°,BCD的面積為4,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,進(jìn)價(jià)為每臺(tái)40元,經(jīng)市場(chǎng)預(yù)測(cè),售價(jià)為每臺(tái)48元時(shí),可售出220臺(tái);售價(jià)每增加1元,銷售量減少10臺(tái)。

1)當(dāng)售價(jià)為55元,銷售量為多少臺(tái)?

2)因受庫(kù)存的影響,每批次進(jìn)貨個(gè)數(shù)不得超過(guò)160臺(tái),若商店想獲得2000元利潤(rùn),則應(yīng)進(jìn)貨多少臺(tái)?售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PB分別切圓OAB兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=40°,則∠ACB= ).

A.70°B.80°C.110°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC2,∠BAC45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BECF相交于點(diǎn)D

1)求證:BECF;

2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校同學(xué)組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

1)甲隊(duì)成績(jī)的中位數(shù)是     分,乙隊(duì)成績(jī)的眾數(shù)是     分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是2,則成績(jī)較為整齊的是     隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠A90°,∠B36°,點(diǎn)D為斜邊BC的中點(diǎn),將線段DC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)任意角度得到線段DE(點(diǎn)E不與A、B、C重合),連接EA,EC,則∠AEC___________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,2個(gè)單位長(zhǎng)度為半徑的⊙A軸于點(diǎn)B、C.解答下列問(wèn)題:

1)將⊙A向下平移 個(gè)單位長(zhǎng)度與軸相切;

2 將⊙A向左平移得到⊙A1,當(dāng)⊙A1首次相切,此時(shí)陰影部分的面積S ;

3)將⊙A向左平移 個(gè)單位長(zhǎng)度與坐標(biāo)軸有三個(gè)公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案