【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中AD=CD,AB=CB,在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積= ACBD,其中正確的結(jié)論有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

【答案】D
【解析】解:在△ABD與△CBD中,
∴△ABD≌△CBD(SSS),
故①正確;
∴∠ADB=∠CDB,
在△AOD與△COD中,
,
∴△AOD≌△COD(SAS),
∴∠AOD=∠COD=90°,AO=OC,
∴AC⊥DB,
故②正確;
四邊形ABCD的面積= = ACBD,
故③正確;
故選D.
先證明△ABD與△CBD全等,再證明△AOD與△COD全等即可判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩條直線都與第三條直線相交,∠1和∠2是內(nèi)錯(cuò)角,∠3和∠2是鄰補(bǔ)角.

(1)根據(jù)上述條件,畫出符合題意的圖形;

(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中陰影部分的面積為 ;

(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= 的圖象上.

(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得SAOP= SAOB , 求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經(jīng)過點(diǎn)(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2 . 上述說法正確的是(
A.①②③④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面的方格紙中,找出互相平行的線段,并用符號(hào)表示出來:____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點(diǎn),交y軸于F點(diǎn),交線段BC于E點(diǎn).求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點(diǎn)P、與直線BC相交于點(diǎn)M,連接PB.問在直線BC下方的拋物線上是否存在點(diǎn)Q,使得△QMB與△PMB的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿ABC的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿CAB的方向移動(dòng),在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:

1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QAAP

2)如圖2,點(diǎn)QCA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;

3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),PQ兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長度等于線段BP的長的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著全國各地空氣出現(xiàn)嚴(yán)重污染,PM2.5屢屢爆表,我國多個(gè)城市發(fā)生霧霾天氣,越來越多的人開始關(guān)注一個(gè)原本陌生的術(shù)語﹣PM2.5.某校九年級(jí)共有1000名學(xué)生,團(tuán)委準(zhǔn)備調(diào)查他們對“PM2.5”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案: 方案一:調(diào)查九年級(jí)部分女生;
方案二:調(diào)查九年級(jí)部分男生;
方案三:到九年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個(gè)方案是;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息,將其補(bǔ)充完整;
(3)請你估計(jì)該校九年級(jí)約有多少名學(xué)生比較了解“PM2.5”的知識(shí).

查看答案和解析>>

同步練習(xí)冊答案