18、⊙O1和⊙O2的半徑分別為2cm和3cm,圓心距O1O2=5cm,那么兩圓的位置關(guān)系是(  )
分析:兩圓半徑和等于圓心距時,兩圓外切.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
解答:解:∵2+3=5,由于兩圓外切時圓心距等于兩圓半徑的和,
∴兩圓外切.
故選A.
點評:本題利用了兩圓外切時圓心距等于兩圓半徑的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,⊙O1和⊙O2的半徑為2和3,連接O1O2,交⊙O2于點P,O1O2=7,若將⊙O1繞點P按順時針方向以30°/秒的速度旋轉(zhuǎn)一周,請寫出⊙O1與⊙O2相切時的旋轉(zhuǎn)時間為
3或6或9
秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
89
=0
的兩根,且O1O2=1,則⊙O1和⊙O2的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若⊙O1和⊙O2的半徑分別為1cm和3cm,且O1O2=
5
cm,則⊙O1和⊙O2的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

⊙O1和⊙O2的半徑分別為20和15,它們相交于A,B兩點,線段AB=24,則兩圓的圓心距O1O2=
25或7
25或7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O1和⊙O2的半徑分別為R1和R2,且R1=2,O1O2=7,且⊙O1與⊙O2相切,則R2的取值是
5或9
5或9

查看答案和解析>>

同步練習(xí)冊答案