15、如圖,四邊形ABCD內(nèi)接于⊙O,∠C=130°,則∠BOD等于( 。
分析:由于四邊形ABCD內(nèi)接于⊙O,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求得∠BAD的度數(shù),而∠BAD、∠BOD是同弧所對(duì)的圓周角和圓心角,根據(jù)圓周角定理即可得到∠BOD的度數(shù).
解答:解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠A+∠C=180°,而∠C=130°,
∴∠A=180°-∠C=50°,
∴∠BOD=2∠A=100°.
故選A.
點(diǎn)評(píng):此題主要考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理的綜合應(yīng)用,熟練掌握相關(guān)知識(shí)點(diǎn)是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案