精英家教網(wǎng)如圖,在△OAB中,OA=OB=2,∠OAE=30°,⊙O切AB于E,且分別交OA、OB于C、D,求圖中陰影部分的面積.
分析:由圖易知:陰影部分的面積=三角形的面積-扇形的面積.所以要求陰影部分的面積,就要通過解直角三角形,求得∠AOB的度數(shù)以及圓的半徑OC的長.可連接OE,在構建的Rt△AOE中,求得上述值.
解答:精英家教網(wǎng)解:連接OE.
∵⊙O切AB于E,∴OE⊥AB,∴∠OEA=90度.
在Rt△OEA中,∠OAE=30°,OA=2
∴OE=
1
2
OA=1,∠AOE=60°.
∴AE=
OA2-OE2
=
3

∵OE⊥AB,OB=OA,
∴BE=2AE=2
3
,∠AOB=2∠OBE=120°.
∴S陰影=S△OAB-S扇形OCD=
1
2
AB•OE-
1
3
πOE2
=
3
-
π
3
點評:本題主要考查了解直角三角形的應用和扇形的面積公式的計算方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•瀘州)如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=
k
x
 (k>0)在第一象限的圖象經(jīng)過A、C兩點,若△OAB面積為6,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△OAB中,OA=OB,以點O為圓心的⊙0經(jīng)過AB的中點C,直線AO與⊙0相交于點D、E,連接CD、CE.
(1)求證:AB是⊙0的切線;
(2)求證:△ACD∽△AEC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=
kx
(k>0)在第一象限的圖象經(jīng)過A,C兩點,若△OAB面積為6,則k的值為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(創(chuàng)新學習)如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
 

(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
 

(3)在(2)中的拋物線上是否存在點P,使以O,A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案