如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE.給出下列五個關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個關(guān)系式作為題設(shè),另外兩個作為結(jié)論,構(gòu)成一個命題.
(1)用序號寫出一個真命題(書寫形式如:如果×××,那么××).并給出證明;
(2)用序號再寫出三個真命題(不要求證明).
分析:(1)如果①②③,那么④⑤;先根據(jù)∠1=∠F,∠D=∠ECF,利用AAS證出△AED≌△FEC,得出AD+BC=CF+BC=BF,再根據(jù)∠1=∠2,得出AB=BF,即可證出AD+BC=AB;
(2)根據(jù)命題的結(jié)構(gòu)和有關(guān)性質(zhì)、判定以及真命題的定義,寫出命題即可.
解答:解:(1)如果①②③,那么④⑤;
理由如下:
∵AD∥BC,
∴∠1=∠F,∠D=∠ECF,
在△AED和△FEC中,
∠1=∠F
∠D=∠DCF
DE=CE
,
∴△AED≌△FEC(AAS),
∴AD=CF,
∴AD+BC=CF+BC=BF,
∵∠1=∠2,
∴∠2=∠F,
∴AB=BF,
∴AD+BC=AB;
(2)如果①③④,那么②⑤,
如果①②④,那么③⑤;
如果①③⑤,那么②④.
點(diǎn)評:此題考查了全等三角形的判定與性質(zhì)、平行線的性質(zhì)、等腰三角形的判定與性質(zhì)、命題與定理,關(guān)鍵是綜合應(yīng)用有關(guān)性質(zhì)與定理對命題的真假進(jìn)行判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案