21、如圖,已知△ABC和△DCE都是等邊三角形(三邊都相等,三個角都是60°),且B,C,E在同一直線上,連接BD交AC于點G,連接AE交CD于點H.
(1)圖中哪些三角形可以通過旋轉(zhuǎn)而得到?挑選其中的一對三角形,指出旋轉(zhuǎn)中心及旋轉(zhuǎn)角度;
(2)若點M,N分別為AE,BD的中點,連CM,CN,根據(jù)旋轉(zhuǎn)有關(guān)知識,你能說明△CNM是什么三角形嗎?為什么?
分析:(1)通過已知△ABC和△DCE都是等邊三角形,及公共頂點C,可把圖形理解為三角形旋轉(zhuǎn),本題可以找出三對通過旋轉(zhuǎn)得到的三角形;
(2)三角形旋轉(zhuǎn),也會帶動對應(yīng)邊上的中線的旋轉(zhuǎn),從而可證明△CNM是等邊三角形.
解答:解:(1)△BCD和△ACE,△BCG和△ACH,△GCD和△HCE,在△BCD和△ACE中,
旋轉(zhuǎn)中心為點C,旋轉(zhuǎn)角度60°;
(2)△CNM是等邊三角形,
理由:∵CM,CN是△BCD和△ACE的對應(yīng)邊上中線,也是這兩個三角形旋轉(zhuǎn)的對應(yīng)邊,由于旋轉(zhuǎn)角為60°,
∴CM=CN,∠MCN=60°,
∴△CNM是等邊三角形.
點評:本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知△ABC和△DEF,∠A=∠D=90°,且△ABC與△DEF不相似,問是否存在某種直線分割,使△ABC所分割成的兩個三角形與△DEF所分割成的兩個三角形分別對應(yīng)相似?
(1)如果存在,請你設(shè)計出分割方案,并給出證明;如果不存在,請簡要說明理由;
(2)這樣的分割是唯一的嗎?若還有,請再設(shè)計出一種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△DEF是兩個邊長都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運(yùn)動,設(shè)△ABC運(yùn)動時間為t秒,
①當(dāng)t為何值時,?ADFC是菱形?請說明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知△ABC和△A″B″C″及點O.
(1)畫出△ABC關(guān)于點O對稱的△A′B′C′;
(2)若△A″B″C″與△A′B′C′關(guān)于點O′對稱,請確定點O′的位置;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知△ABC和兩條相交于O點且夾角為60°的直線m、n.
(1)畫出△ABC關(guān)于直線m的對稱△A1B1C 1,再畫出△A1B1C 1關(guān)于直線n的對稱△A2B2C 2;
(2)你認(rèn)為△A2B2C 2可視為△ABC繞著哪一點旋轉(zhuǎn)多少度得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

同步練習(xí)冊答案