【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.
(1)求該二次函數(shù)的解析式;
(2)設該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).
【答案】
(1)
解:∵二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),
∴ ,
解得: ,
∴y= x2﹣ x﹣4
(2)
解:過點D作DM⊥y軸于點M,
∵y= x2﹣ x﹣4= (x﹣1)2﹣ ,
∴點D(1,﹣ )、點C(0,﹣4),
則S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC
= ×(1+3)× ﹣ ×( ﹣4)×1﹣ ×3×4
=4
(3)
解:四邊形APEQ為菱形,E點坐標為(﹣ ,﹣ ).理由如下
如圖2,E點關(guān)于PQ與A點對稱,過點Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四邊形AQEP為菱形,
∵FQ∥OC,
∴ = = ,
∴ = =
∴AF= t,F(xiàn)Q= t
∴Q(3﹣ t,﹣ t),
∵EQ=AP=t,
∴E(3﹣ t﹣t,﹣ t),
∵E在二次函數(shù)y= x2﹣ x﹣4上,
∴﹣ t= (3﹣ t)2﹣ (3﹣ t)﹣4,
∴t= ,或t=0(與A重合,舍去),
∴E(﹣ ,﹣ )
【解析】(1)將A,B點坐標代入函數(shù)y= x2+bx+c中,求得b、c,進而可求解析式;(2)由解析式先求得點D、C坐標,再根據(jù)S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC , 列式計算即可;(3)注意到P,Q運動速度相同,則△APQ運動時都為等腰三角形,又由A、E對稱,則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對邊平行且相等的性質(zhì)可用t表示E點坐標,又E在二次函數(shù)的圖象上,所以代入即可求t,進而E可表示.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數(shù)的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當m=3時,點B的橫坐標的所有可能值是 ▲ ;當點B的橫坐標為4n(n為正整數(shù))時,m= (用含n的代數(shù)式表示.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】宿州市高新區(qū)某電子電路板廠到安徽大學從2018年應屆畢業(yè)生中招聘公司職員,對應聘者的專業(yè)知識、英語水平、參加社會實踐與社團活動等三項進行測試或成果認定,三項的得分滿分都為100分,三項的分數(shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應聘者的得分如下表所示.
項目 | 專業(yè)知識 | 英語水平 | 參加社會實踐與 社團活動等 |
甲 | 85 | 85 | 90 |
乙 | 85 | 85 | 70 |
丙 | 80 | 90 | 70 |
丁 | 90 | 90 | 50 |
(1)分別算出4位應聘者的總分;
(2)表中四人“專業(yè)知識”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會實踐與社團活動等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學生應聘者有何建議?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】放風箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風箏.如圖,他在A處不小心讓風箏掛在了一棵樹梢上,風箏固定在了D處,此時風箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達了離A處10米的B處,此時風箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風箏線的長度是多少米?(風箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE⊥AB于O,若∠BOD=40°,則不正確的結(jié)論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD 相交于點O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有三個點A(1,﹣1)、B(﹣1,﹣1)、C(0,1),點P(0,2)關(guān)于A的對稱點為P1,P1關(guān)于B的對稱點為P2,P2關(guān)于C的對稱點為P3,按此規(guī)律繼續(xù)以A、B、C為對稱中心重復前面的操作,依次得到P4、P5、P6,…,則點P2018的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有( ).
A. ①②③④ B. ①④ C. ②④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩組鄰邊相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中 AB=CB,AD=CD,詹姆斯在探究箏形的性質(zhì)時,得到如下結(jié)論:① ACBD;②AOCOAC;③△ABD≌△CBD;④四邊形ABCD的面積=ACBD,其中,正確的結(jié)論有_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com