(2007•長春)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過C作y軸的平行線交BO的延長線于D.
(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;
(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

【答案】分析:(1)根據(jù)點A的縱坐標是2,可以確定點B和點C的縱坐標,再進一步根據(jù)反比例函數(shù)的解析式求得點B和點C的橫坐標,再進一步求得它們的長度之比;
(2)和(1)的方法類似,在求平行于x軸的線段的長度的時候,要讓右邊的點的橫坐標減去左邊的點的橫坐標;
(3)根據(jù)(2)中的長度比,結(jié)合平行線分線段成比例定理求得該梯形的下底的長,再根據(jù)梯形的面積公式進行計算.
解答:解:(1)∵A(0,2),BC∥x軸,
∴B(-1,2),C(3,2),
∴AB=1,CA=3,
∴線段AB與線段CA的長度之比為

(2)∵B是函數(shù)y=-(x<0)的一點,C是函數(shù)y=(x>0)的一點,
∴B(-,a),C(,a),
∴AB=,CA=,
∴線段AB與線段CA的長度之比為;

(3)∵=,
=
又∵OA=a,CD∥y軸,
=
∴CD=4a,
∴四邊形AODC的面積為=(a+4a)×=15.
點評:本題考查了反比例函數(shù)與幾何的綜合應用,解決此題的關(guān)鍵是要能夠根據(jù)兩點的坐標求得兩點之間的長度,根據(jù)平行線分線段成比例定理進行計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•長春)如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個矩形CFED,點D,E,F(xiàn)分別在AC,AB,BC上,設AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當h等于30時,求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當時,y最大(小)值=.)

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•長春)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過C作y軸的平行線交BO的延長線于D.
(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;
(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年吉林省長春市中考數(shù)學試卷(解析版) 題型:解答題

(2007•長春)如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個矩形CFED,點D,E,F(xiàn)分別在AC,AB,BC上,設AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當h等于30時,求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當時,y最大(小)值=.)

查看答案和解析>>

科目:初中數(shù)學 來源:2007年吉林省長春市中考數(shù)學試卷(解析版) 題型:解答題

(2007•長春)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過C作y軸的平行線交BO的延長線于D.
(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;
(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

查看答案和解析>>

同步練習冊答案