【題目】已知:如圖,在ABCD中,AE⊥BC,CF⊥AD,垂足分別為E、F,AE、CF分別與BD相交于點G、H,聯(lián)結(jié)AH、CG.
求證:四邊形AGCH是平行四邊形.
【答案】證明見解析.
【解析】法1:由平行四邊形對邊平行,且CF與AD垂直,得到CF與BC垂直,根據(jù)AE與BC垂直,得到AE與CF平行,得到一對內(nèi)錯角相等,利用等角的補角相等得到∠AGB=∠DHC,根據(jù)AB與CD平行,得到一對內(nèi)錯角相等,再由AB=CD,利用AAS得到三角形ABG與三角形CDH全等,利用全等三角形對應邊相等得到AG=CH,利用一組對邊平行且相等的四邊形為平行四邊形即可得證;
法2:連接AC,與BD交于點O,利用平行四邊形的對角線互相平分得到OA=OC,OB=OD,再由AB與CD平行,得到一對內(nèi)錯角相等,根據(jù)CF與AD垂直,AE與BC垂直,得一對直角相等,利用ASA得到三角形ABG與三角形CDH全等,利用全等三角形對應邊相等得到BG=DH,根據(jù)等式的性質(zhì)得到OG=OH,利用對角線互相平分的四邊形為平行四邊形即可得證.
證明:在□ABCD中,AD∥BC,AB∥CD,
∵CF⊥AD,∴CF⊥BC,
∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,
∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,
∴∠AGB=∠DHC,
∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,
∴AG=CH,
∴四邊形AGCH是平行四邊形;
法2:連接AC,與BD相交于點O,
在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
∴∠ABG=∠CDH,
∵CF⊥AD,AE⊥BC,
∴∠AEB=∠CFD=90°,
∴∠BAG=∠DCH,
∴△ABG≌CDH,
∴BG=DH,
∴BO﹣BG=DO﹣DH,
∴OG=OH,
∴四邊形AGCH是平行四邊形.
“點睛”此題考查了平行四邊形的判定與性質(zhì),熟練掌握平式子變形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:
①b2﹣4ac>0;
②4a+c>2b;
③(a+c)2>b2;
④x(ax+b)≤a﹣b.
其中正確結(jié)論的是 .(請把正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學統(tǒng)計了周六該停車場各時段的借、還自行車數(shù),以及停車場整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段 | x | 還車數(shù) (輛) | 借車數(shù) (輛) | 存量y (輛) |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
根據(jù)所給圖表信息,解決下列問題:
(1)m= ,解釋m的實際意義: ;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知9:00~10:O0這個時段的還車數(shù)比借車數(shù)的3倍少4,求此時段的借車數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,E為⊙O上一點,∠EAB的平分線AC交⊙O于C點,過C點作CD⊥AE的延長線于D點,直線CD與射線AB交于P點.
(1)求證:DC為⊙O切線;
(2)若DC=1,AC=,①求⊙O半徑長;②求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】吸煙有害健康!你知道嗎,即使被動吸煙也大大危害健康、有消息稱,我國準備從2011年元月一日起在公眾場所實行“禁煙”,為配合“禁煙”行動,某校組織同學們在某社區(qū)開展了“你支持哪種戒煙方式”的問卷調(diào)查,征求市民的意見,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計圖:
根據(jù)統(tǒng)計圖解答:
(1)同學們一共隨機調(diào)查了多少人?
(2)請你把統(tǒng)計圖補充完整;
(3)如果在該社區(qū)隨機咨詢一位市民,那么該市民支持“強制戒煙”的概率是多少?假定該社區(qū)有1萬人,請估計該地區(qū)大約有多少人支持“警示戒煙”這種方式?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=(k﹣2)x+k經(jīng)過第一、二、四象限,則k的取值范圍是( 。
A.k≠2B.k>2C.0<k<2D.0≤k<2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com