【題目】我國南宋數(shù)學(xué)家楊輝用三角形解釋二項和的乘方規(guī)律,稱之為楊輝三角,這個三角形給出了(a+b)n (n=1,2,3,4,…)的展開式的系數(shù)規(guī)律(n的次數(shù)由大到小的順序)

1 1 (a+b)1=a+b

1 2 1 (a+b)2=a2+2ab+b2

1 3 3 1 (a+b)3=a3+3a2b+3ab2+b3

1 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4

…… ……

請依據(jù)上述規(guī)律,寫出(x1)2019展開式中含x2018項的系數(shù)是________.

【答案】-2019

【解析】

首先確定是展開式中的第幾項,根據(jù)楊輝三角即可解決問題.

解:原式可變形為:(x1)2019=[x+(1)]2019

的項是第二項,則

∴含的項的系數(shù)是.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某魚塘捕到100條魚,稱得總重為150千克,這些魚大小差不多, 做好標記后放回魚塘,在它們混入魚群后又捕到102條大小差不多的同種魚,稱得總重仍為150千克,其中有2條帶有標記的魚.(1)魚塘中這種魚大約有多少條? (2)估計這個魚塘可產(chǎn)這種魚多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負擔(dān)過重會嚴重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A點的坐標為(1,0).以OA為邊在x軸上方畫一個正方形OABC.以原點O為圓心,正方形的對角線OB長為半徑畫弧,與x軸正半軸交于點D

1)點D的坐標是 ;

2)點Px,y),其中x,y滿足2x-y=-4

①若點P在第三象限,且OPD的面積為3,求點P的坐標;

②若點P在第二象限,判斷點E+1,0)是否在線段OD上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AF分別與BD、CE交于點G、H,其中∠1+∠2=180°.

1)判斷BDCE有怎樣的位置關(guān)系,并說明理由;

2)若∠A=F,探索∠C與∠D的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(m,4),B(﹣4,n)在反比例函數(shù)y=k0)的圖象上,經(jīng)過點A、B的直線與x軸相交于點C,與y軸相交于點D.

(1)若m=2,求n的值;

(2)求m+n的值;

(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場準備進一批兩種不同型號的衣服,已知購進種型號的衣服9件,種型號的衣服10件,則共需1810元;若購進種型號的衣服12件,種型號的衣服,8件,共需1880元;已知銷售一種種型號衣服可獲利18元,銷售一種種型號衣服可獲利30元,要時這次銷售獲利不少于699元,且種型號衣服不多于28.

1)求型號的衣服進價各是多少元?

2)已知購進型號衣服是型號衣服的2倍還多4件,則商店這次進貨中一共有幾種方案.

查看答案和解析>>

同步練習(xí)冊答案