【答案】
分析:(1)求出當(dāng)售價是13時,銷售量是150,設(shè)y與x的關(guān)系式是y=kx+b,把(10,300),(13,150)代入得到
,求出方程組的解即可得出答案;
(2)由題意得出8(-50x+800)≤1200,求出x≥11,設(shè)利潤是w,w=yx-8y=-50(x-12)
2+800,設(shè)進貨成本為P元
則P≤1200,即8(-50x+800)≤1200,解得x≥13.5,因為在對稱軸右邊,W隨x增大而減小,所以當(dāng)x=13.5時,求出最大值即可;
(3)根據(jù)題意得:-50x
2+1200x-6400≥600,求出不等式的解集即可.
解答:(1)解:
=150,
設(shè)y與x的關(guān)系式是y=kx+b,
把(10,300),(13,150)代入得:
,
解得:
,
∴y=-50x+800,
答:y與x的關(guān)系是y=-50x+800.
(2)解:設(shè)利潤是w,
w=yx-8y=(-50x+800)x-8(-50x+800)=-50x
2+1200x-6400=-50(x-12)
2+800,
∵a=-50<0,開口向下,對稱軸是直線x=12,
設(shè)進貨成本為P元
∴P≤1200,即8(-50x+800)≤1200,解得x≥13.5,
∴x=12(舍去)
∵在對稱軸右邊,W隨x增大而減小
∴當(dāng)x=13.5時,W最大,W=687.5
答:在進貨成本不超過1200元時,銷售單價定為13.5元可獲得最大利潤,最大利潤是687.5.
(3)解:根據(jù)題意得:-50x
2+1200x-6400≥600,
解得:10≤x≤14,
答:如果要使該水果每天的利潤不低于600元,銷售單價應(yīng)在10-14范圍內(nèi).
點評:本題主要考查對求二次函數(shù)的解析式,用待定系數(shù)法求一次函數(shù)的解析式,解二元一次方程組,二次函數(shù)的最值,二次函數(shù)的頂點式等知識點的理解和掌握,把實際問題轉(zhuǎn)化成數(shù)學(xué)問題是解此題的關(guān)鍵,題型較好,具有代表性,用的數(shù)學(xué)思想是轉(zhuǎn)化思想.