【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點A、C、B在同一條直線上,且AE、BD分別與CD、CE交于點M、N.
求證:(1)AE=DB;
(2)△CMN為等邊三角形.
【答案】證明略
【解析】
證明:(1)∵△DAC、△EBC均是等邊三角形,
∴AC=DC,EC=BC,∠ACD=∠BCE=60°,………… 2分
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB. ……………… 3分
在△ACE和△DCB中,
∴△ACE≌△DCB(SAS). ………… 5分
∴AE=DB. ……………… 6分
(2)由(1)可知:△ACE≌△DCB,
∴∠CAE=∠CDB,
即∠CAM=∠CDN. ……………… 7分
∵△DAC、△EBC均是等邊三角形,
∴AC=DC,∠ACM=∠BCE=60°.
又點A、C、B在同一條直線上,
∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,
即∠DCN=60°.
∴∠ACM=∠DCN. ………… 8分
在△ACM和△DCN中,
∴△ACM≌△DCN(ASA). ……………… 10分
∴CM=CN. ……………… 11分
又∠DCN=60°,
∴△CMN為等邊三角形. ……………12分
科目:初中數學 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線l1、l2分別交y軸于點B、C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標;
(2)若OC:OB=1:3,求直線l2的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=5,BC=8,AC=7,動點P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于_______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知射線OC上的任意一點到∠AOB的兩邊的距離都相等,點D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個條件中的某一個即可,請寫出所有可能的條件的序號__________.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為BD(如圖乙).再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于A、B兩點(點A在點B的左側),點B的坐標為(3,0),與軸交于點C(0,-3),頂點為D.
(1)求拋物線的解析式及頂點D的坐標.
(2)聯結AC,BC,求∠ACB的正切值.
(3)點P是x軸上一點,是否存在點P使得△PBD與△CAB相似,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)M是拋物線上一點,點N在軸,是否存在點N,使得以點A,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點處練習發(fā)球,將球從點正上方的處發(fā)出,把球看成點,其運行的高度與運行的水平距離滿足關系式.已知球網與點的水平距離為,高度為,球場的邊界距點的水平距離為.
()求與的關系式(不要求寫出自變量的取值范圍).
()球能否越過球網?球會不會出界?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:△ABC的周長為30cm,把△ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則△ABD的周長是( )
A. 22cmB. 20cmC. 18cmD. 15cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com