蒼南縣是浙江省的海洋大縣,水產(chǎn)資源十分豐富,春節(jié)期間人們對(duì)水產(chǎn)品的需求將達(dá)到高峰期,某水產(chǎn)品銷售公司對(duì)歷年春節(jié)期間的市場(chǎng)行情進(jìn)行了調(diào)查,調(diào)查發(fā)現(xiàn)某種水產(chǎn)品的每千克售價(jià)y1(元)與銷售第x天滿足關(guān)系式y(tǒng)1=2x+30(1≤x≤15且x為整數(shù));而其每千克的成本y2(元)與銷售第x天滿足函數(shù)關(guān)系如圖所示.
(1)試確定b、c的值;
(2)求出這種水產(chǎn)品每千克的利潤(rùn)y(元)與銷售第x天之間的函數(shù)關(guān)系式;
(3)第幾天出售這種水產(chǎn)品每千克的利潤(rùn)最大?最大利潤(rùn)是多少?
(1)將點(diǎn)(7,23),(1,20)分別代入二次函數(shù)解析式得:
23=
1
4
×49+7b+c
20=
1
4
×1+b+c
,
解得:
b=-
3
2
c=
85
4
;

(2)根據(jù)售價(jià)減去成本即是利潤(rùn),得出:
y=y1-y2
=2x+30-(
1
4
x2-
3
2
x+
85
4
),
=-
1
4
x2+
7
2
x+
35
4
;

(3)y=-
1
4
x2+
7
2
x+
35
4
;
=-
1
4
(x2-14x)+
35
4
;
=-
1
4
(x-7)2+21,
∵a=-
1
4
<0,
∴拋物線開口向下,
∴在第7天出售這種水產(chǎn)品每千克的利潤(rùn)最大,最大利潤(rùn)為21(元).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以點(diǎn)M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點(diǎn)A,交x軸的負(fù)半軸交于點(diǎn)B,交y軸的正半軸于點(diǎn)C,過點(diǎn)C的直線交x軸的負(fù)半軸于點(diǎn)D(-9,0)
(1)求A,C兩點(diǎn)的坐標(biāo);
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點(diǎn),求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對(duì)稱軸分別與直線CD交于點(diǎn)E,與AC交于點(diǎn)F.如果點(diǎn)P是拋物線上的動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得S△PAM:S△CEF=
3
:3?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(注意:本題中的結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一個(gè)運(yùn)算裝置,當(dāng)輸入值為x時(shí),其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時(shí),相應(yīng)的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標(biāo)系中畫出這個(gè)二次函數(shù)的圖象,并根據(jù)圖象寫出當(dāng)輸出值y為正數(shù)時(shí)輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某游樂園要建一個(gè)直徑為20m的圓形噴水池,計(jì)劃在噴水池的中心安裝一個(gè)大的噴水頭,使噴出的水柱中心4m處達(dá)到最高,高度為6m,那么這個(gè)噴水頭應(yīng)設(shè)計(jì)的高度為______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙C經(jīng)過原點(diǎn)且與兩坐標(biāo)分別交于點(diǎn)A與點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)M是圓上弧BO的中點(diǎn),且∠BMO=120°.
①求弧BO的度數(shù);
②求⊙C的半徑;
③求過點(diǎn)B、M、O的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某拋物線型拱橋的示意圖如圖,已知該拋物線的函數(shù)表達(dá)式為y=-
1
48
x2+12
,為保護(hù)該橋的安全,在該拋物線上的點(diǎn)E、F處要安裝兩盞警示燈(點(diǎn)E、F關(guān)于y軸對(duì)稱),這兩盞燈的水平距離EF是24米,則警示燈F距水面AB的高度是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線y=
1
6
x2-
1
6
(b+1)x+
b
6
(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.若在第一象限內(nèi)存在點(diǎn)P,使得四邊形PCOB的面積等于7
2
b
,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形.求:
(1)點(diǎn)A的坐標(biāo)為______.
(2)求符合要求的點(diǎn)P坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖拋物線y=-
3
3
x2-
2
3
3
x+
3
,x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D.
(1)求A、B、C的坐標(biāo);
(2)把△ABC繞AB的中點(diǎn)M旋轉(zhuǎn)180°,得到四邊形AEBC:
①求E點(diǎn)坐標(biāo);
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最小?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-2(k+1)x+4k的圖象與x軸分別交于點(diǎn)A(x1,0)、B(x2,0),且-
3
2
<x1-
1
2

(1)求k的取值范圍;
(2)設(shè)二次函數(shù)y=x2-2(k+1)x+4k的圖象與y軸交于點(diǎn)M,若OM=OB,求二次函數(shù)的表達(dá)式;
(3)在(2)的條件下,若點(diǎn)N是x軸上的一點(diǎn),以N、A、M為頂點(diǎn)作平行四邊形,該平行四邊形的第四個(gè)頂點(diǎn)F在二次函數(shù)y=x2-2(k+1)x+4k的圖象上,請(qǐng)直接寫出滿足上述條件的平行四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案