【題目】如圖,O是直線(xiàn)AB上一點(diǎn),OD平分∠AOC.

(1)若∠AOC=60°,請(qǐng)求出∠AOD和∠BOC的度數(shù).

(2)若∠AOD和∠DOE互余,且∠AOD=AOE,請(qǐng)求出∠AOD和∠COE的度數(shù).

【答案】(1)∠AOD=30°;BOC=120°;(2)∠AOD=30°;∠COE=30°.

【解析】

根據(jù)角平分線(xiàn)的性質(zhì)以及余角補(bǔ)角的性質(zhì)計(jì)算即可解答.

解:(1)∠AOD=×AOC=×60°=30°,∠BOC=180°﹣∠AOC=180°60°=120°.

2)∵∠AOD和∠DOE互余,

∴∠AOE=AOD+DOE=90°

∴∠AOD=AOE=×90°=30°,

∴∠AOC=2AOD=60°,

∴∠COE=90°﹣∠AOC=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是邊長(zhǎng)為10cm的正方形鐵片,過(guò)兩個(gè)頂點(diǎn)剪掉一個(gè)三角形,以下四種剪法中,裁剪線(xiàn)長(zhǎng)度所標(biāo)的數(shù)據(jù)(單位:cm)不正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空或填寫(xiě)理由.

(1)如圖甲,∵∠   =   (已知);

ABCD(   

(2)如圖乙,已知直線(xiàn)ab,3=80°,求∠1,2的度數(shù).

解:∵ab,(   

∴∠1=4(   

又∵∠3=4(   

3=80°(已知)

∴∠1=(   )(等量代換)

又∵∠2+3=180°

∴∠2=(   )(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2= 的圖象交于A(yíng)、B兩點(diǎn),已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2
(1)求一次函數(shù)的函數(shù)表達(dá)式;
(2)已知反比例函數(shù)在第一象限的圖象上有一點(diǎn)C到x軸的距離為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知EF分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。

求證:四邊形AECF是平行四邊形;

BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是射線(xiàn)BE上一點(diǎn),過(guò)ACABE交射線(xiàn)BF于點(diǎn)C,ADBF交射線(xiàn)BF于點(diǎn)D,給出下列結(jié)論:①∠1是∠B的余角;②圖中互余的角共有3對(duì);③∠1的補(bǔ)角只有∠ACF;④與∠ADB互補(bǔ)的角共有3個(gè).則上述結(jié)論正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距720km,一列快車(chē)和一列慢車(chē)都從甲地駛往乙地,慢車(chē)先行駛1小時(shí)后,快車(chē)才開(kāi)始行駛.已知快車(chē)的速度是120km/h,慢車(chē)的速度是80km/h,快車(chē)到達(dá)乙地后,停留了20min,由于有新的任務(wù),于是立即按原速返回甲地.在快車(chē)從甲地出發(fā)到回到甲地的整個(gè)程中,與慢車(chē)相遇了兩次,這兩次相遇時(shí)間間隔是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)A在射線(xiàn)CE上,∠C=∠D

1)如圖1,若AC∥BD,求證:AD∥BC;

2)如圖2,若∠BAC=∠BAD,BD⊥BC,請(qǐng)?zhí)骄?/span>∠DAE∠C的數(shù)量關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明;

3)如圖3,在(2)的條件下,過(guò)點(diǎn)DDF∥BC交射線(xiàn)于點(diǎn)F,當(dāng)∠DFE=8∠DAE時(shí),求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+EOF=156°,則∠EOF的度數(shù)是( 。

A. 88° B. 30° C. 32° D. 48°

查看答案和解析>>

同步練習(xí)冊(cè)答案