反比例函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的大致圖象如圖所示,它們的解析式可能分別是
A.B.,
C.D.,
B

試題分析:由圖象可知,反比例函數(shù)所在的象限為第二和第四象限,二次函數(shù)的圖像開口向下,所以兩者的系數(shù)都小于零,即兩者的系數(shù)或同為k,或同為-k。由圖像可知,若時,則,,由此可知,A選項中,時,,因為系數(shù)需要小于零,所以,即;B選項中,,,因為系數(shù)需要小于零,所以,即;C選項中,兩個系數(shù)不相等,可排除;D選項中,時,,因為系數(shù)需要小于零,所以,即,所以,綜上可知,答案應(yīng)該為B。
點評:此題關(guān)鍵在于兩個函數(shù)中系數(shù)問題,即同為k或者同為-k,解決之后,后面的問題就清晰了。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點M,連結(jié)MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.

(1)直接寫出點D的坐標(biāo);
(2)已知點B與點D在經(jīng)過原點的拋物線上,點P在第一象限內(nèi)的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結(jié)OP.
①若以O(shè)、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標(biāo);
②試問在拋物線的對稱軸上是否存在一點T,使得的值最大.若存在,求出T點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,

有下列5個結(jié)論:(1)a b c>0; (2)b<a + c;
(3)4a+2b+c>0; (4)2c<3b;(5)a +b>m(am+ b)(m≠1的實數(shù))
其中正確的結(jié)論的序號是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=2x2-12x+16繞它的頂點旋轉(zhuǎn)180°,所得的解析式是(  )
A.y=-2x2-12x+16B.y=-2x2+12x-16
C.y=-2x2+12x-19D.y=-2x2+12x-20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行于y軸的直線L被拋物線y=、y=所截.當(dāng)直線L向右平移2個單位時,直線L被兩條拋物線所截得的線段掃過的圖形面積為     __ 平方單位。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把拋物線先沿x軸向右平移3個單位,再沿y軸向上平移2個單位,得到的拋物線解析式為                .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)的圖象與軸的一個交點為A,另一個交點為B,與軸交于點C.
(1)求的值及點B、點C的坐標(biāo);
(2)直接寫出當(dāng)時,的取值范圍;
(3)直接寫出當(dāng)時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)的圖象與y軸交于點A,與x軸交于B、C兩點,則△ABC的面積是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點坐標(biāo)是(   )
A.(1,-3)B.(-1,-3)C.(1,3)D.(-1,3)

查看答案和解析>>

同步練習(xí)冊答案