【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).

【答案】
(1)

解:根據(jù)題意得:BD∥AE,

∴∠ADB=∠EAD=45°,

∵∠ABD=90°,

∴∠BAD=∠ADB=45°,

∴BD=AB=60,

∴兩建筑物底部之間水平距離BD的長度為60米


(2)

解:延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,

∴AF=BD=DF=60,

在Rt△AFC中,∠FAC=30°,

∴CF=AFtan∠FAC=60× =20 ,

又∵FD=60,

∴CD=60﹣20 ,

∴建筑物CD的高度為(60﹣20 )米.


【解析】(1)根據(jù)題意得:BD∥AE,從而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得兩建筑物底部之間水平距離BD的長度為60米;(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,根據(jù)AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD的對角線交于點E,有AE=EC,BE=ED,以AB為直徑的⊙O過點E.
(1)求證:四邊形ABCD的是菱形;
(2)若CD的延長線與圓相切于點F,已知直徑AB=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為

(1)若是“相伴數(shù)對”,求的值;

(2)寫出一個“相伴數(shù)對” ,其中

(3)若是“相伴數(shù)對”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB內(nèi)部有3條射線OE、OC、OF

(1) 如圖1,若∠AOB = 90°,∠AOC = 30°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度數(shù).

(2) 如圖2,若∠AOB = α,∠EOB = ∠COB,∠COF = ∠FOA,∠EOF的度數(shù)(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,ABAC=10,BC=12,DBC邊上的任意一點,過點D分別作DEAB,DFAC,垂足分別為E,F,則DEDF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC=2,BC邊上有10個不同的點P1,P2,……,P10(i = 1,2,……,10),那么 M1+M2+……+M10的值為(

A. 4 B. 14 C. 40 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-10,3,P為數(shù)軸上任意一點其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點M、N的距離相等那么x的值是 ;

3數(shù)軸上是否存在點P,使點P到點M、N的距離之和是8若存在,直接寫出x的值;若不存在,請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點MN的距離相等,t的值.

查看答案和解析>>

同步練習(xí)冊答案