【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

【答案】(1)猜想:AC與⊙O相切(2)四邊形BOCD為菱形(3)

【解析】試題分析:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的判定方法和圓錐的計算.(1)根據(jù)等腰三角形的性質(zhì)得∠A=∠ABC=30°,再由OB=OC∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根據(jù)切線的判定定理即可得到,AC⊙O的切線;

2)連結(jié)OD,由CD∥AB得到∠AOC=∠OCD,根據(jù)三角形外角性質(zhì)得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判斷△OCD為等邊三角形,則CD=OB=OC,先可判斷四邊形OBDC為平行四邊形,加上OB=OC,于是可判斷四邊形BOCD為菱形;(3)在Rt△AOC中,根據(jù)含30度的直角三角形三邊的關(guān)系得到

OC=BC的弧長=然后根據(jù)圓錐的計算求圓錐的底面圓半徑.

試題解析(1AC⊙O相切

,∠ACB120°,∴∠ABC∠A30°。

∠CBO∠BCO30°,

∴∠OCA120°30°90°,∴AC⊥OC

∵OC⊙O的半徑,

∴AC⊙O相切。

2)四邊形BOCD是菱形

連接OD

∵CD∥AB,

∴∠OCD∠AOC2×30°60°

,

∴△COD是等邊三角形,

,

四邊形BOCD是平行四邊形,

四邊形BOCD是菱形。

3)在Rt△AOC中,∠A30°,AC6,

ACtan∠A6tan30°,

BC的弧長

底面圓半徑

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AD是邊BC上的中線,過點AAEBC,過點DDEAB,DEAC、AE分別交于點O、點E,連結(jié)EC.

(1)求證:AD=EC;

(2)求證:四邊形ADCE是菱形;

(3)若AB=AO,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G.

(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:

(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DECD=CFDA:

(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時,試判斷是否為定值,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以矩形ABCD兩對角線的交點O為原點建立平面直角坐標(biāo)系,且x軸過BC中點,y軸過CD中點,yx2與邊AB、BC分別交于點EF.若AB10,BC3,則△EBF的面積是( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).

(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);

(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90后的△A2BC2;

(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π).

(4)在x軸上有一點P,PA+PB的值最小,請直接寫出點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展了學(xué)生使用手機(jī)調(diào)研活動,隨機(jī)抽取部分學(xué)生進(jìn)行使用手機(jī)的目的每周使用手機(jī)的時間的問卷調(diào)查,并繪制成如圖①,圖②的統(tǒng)計圖.已知查資料的人數(shù)是40人.

1)在這次調(diào)查中,一共抽取了  名學(xué)生;

2)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角的度數(shù)是  度;

3)補(bǔ)全條形統(tǒng)計圖;(注:0-1小時有16人)

4)該校共有學(xué)生2660人,請估計每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.

(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;

(2)若∠B與∠ADC互余,求BD及AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC和△DEF的頂點分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).

按下列要求畫圖:以點O為位似中心,將ABC向y軸左側(cè)按比例尺2:1放大得ABC的位似圖形△A1B1C1,并解決下列問題:

(1)頂點A1的坐標(biāo)為 ,B1的坐標(biāo)為 ,C1的坐標(biāo)為 ;

(2)請你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與DEF拼接成一個平行四邊形(非正方形)寫出符合要求的變換過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,德強(qiáng)學(xué)校初中部中考屢創(chuàng)佳績,捷報頻傳.為了吸納更多的優(yōu)質(zhì)生源,學(xué)校決定要新建一棟層的教學(xué)大樓,每層樓有間教室,進(jìn)出這棟大樓共有道門,其中兩道正門大小相同,兩道側(cè)門大小相同,進(jìn)樓前為了保證學(xué)生安全,對道門進(jìn)行了測試:正常情況下,當(dāng)同時開啟一道正門和兩道側(cè)門時,分鐘可以通過名學(xué)生;當(dāng)同時開啟一道正門和一道側(cè)門時分鐘可以通過名學(xué)生.

1)正常情況下,平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低,安全檢查規(guī)定,在緊急情況下全大樓的學(xué)生應(yīng)在分鐘內(nèi)通過這道門安全撤離.如果這棟教學(xué)樓每班預(yù)計招收45名學(xué)生,那么建造的這道門是否符合安全規(guī)定?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案