如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋物線(xiàn)y=
1
6
x2+bx+c過(guò)點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫(huà)出拋物線(xiàn)的大致圖象;
(2)點(diǎn)Q(8,m)在拋物線(xiàn)y=
1
6
x2+bx+c上,點(diǎn)P為此拋物線(xiàn)對(duì)稱(chēng)軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值;
(3)CE是過(guò)點(diǎn)C的⊙M的切線(xiàn),點(diǎn)E是切點(diǎn),求OE所在直線(xiàn)的解析式.
(1)由已知,得A(2,0),B(6,0),
∵拋物線(xiàn)y=
1
6
x2+bx+c過(guò)點(diǎn)A和B,
1
6
×22+2b+c=0
1
6
×62+6b+c=0

解得
b=-
4
3
c=2

則拋物線(xiàn)的解析式為
y=
1
6
x2-
4
3
x+2.
故C(0,2).(2分)
(說(shuō)明:拋物線(xiàn)的大致圖象要過(guò)點(diǎn)A、B、C,其開(kāi)口方向、頂點(diǎn)和對(duì)稱(chēng)軸相對(duì)準(zhǔn)確)(3分)

(2)如圖①,拋物線(xiàn)對(duì)稱(chēng)軸l是x=4.
∵Q(8,m)在拋物線(xiàn)上,
∴m=2.過(guò)點(diǎn)Q作QK⊥x軸于點(diǎn)K,則K(8,0),QK=2,AK=6,
∴AQ=
AK2+QK2
=2
10
.(5分)
又∵B(6,0)與A(2,0)關(guān)于對(duì)稱(chēng)軸l對(duì)稱(chēng),
∴PQ+PB的最小值=AQ=2
10


(3)如圖②,連接EM和CM.
由已知,得EM=OC=2.
∵CE是⊙M的切線(xiàn),
∴∠DEM=90°,
則∠DEM=∠DOC.
又∵∠ODC=∠EDM.
故△DEM≌△DOC.
∴OD=DE,CD=MD.
又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.
則OECM.(7分)
設(shè)CM所在直線(xiàn)的解析式為y=kx+b,CM過(guò)點(diǎn)C(0,2),M(4,0),
4k+b=0
b=2

解得
k=-
1
2
b=2

直線(xiàn)CM的解析式為y=-
1
2
x+2

又∵直線(xiàn)OE過(guò)原點(diǎn)O,且OECM,
∴OE的解析式為y=-
1
2
x.(8分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1、2,已知拋物線(xiàn)y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A.
(1)求此拋物線(xiàn)的解析式;
(2)如圖1,若M(0,1),過(guò)點(diǎn)A的直線(xiàn)與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線(xiàn)段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH從點(diǎn)D開(kāi)始,沿射線(xiàn)DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長(zhǎng)度單位/秒,在運(yùn)動(dòng)過(guò)程中腰FG與直線(xiàn)AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線(xiàn)頂點(diǎn)為K,KI⊥x軸于I點(diǎn),一塊三角板直角頂點(diǎn)P在線(xiàn)段KI上滑動(dòng),且一直角邊過(guò)A點(diǎn),另一直角邊與x軸交于Q(m,0),請(qǐng)求出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=ax2+bx+2交x軸于A(-1,0),B(4,0)兩點(diǎn),交y軸于點(diǎn)C,與過(guò)點(diǎn)C且平行于x軸的直線(xiàn)交于另一點(diǎn)D,點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn).

(1)求拋物線(xiàn)解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)E在x軸上,若以A,E,D,P為頂點(diǎn)的四邊形是平行四邊形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)過(guò)點(diǎn)P作直線(xiàn)CD的垂線(xiàn),垂足為Q,若將△CPQ沿CP翻折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q′.是否存在點(diǎn)P,使Q′恰好落在x軸上?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)設(shè)(1)中的拋物線(xiàn)交y軸與C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線(xiàn)上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)A為y軸正半軸上一點(diǎn),A,B兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),過(guò)點(diǎn)A任作直線(xiàn)交拋物線(xiàn)y=
2
3
x2
于P,Q兩點(diǎn).
(1)求證:∠ABP=∠ABQ;
(2)若點(diǎn)A的坐標(biāo)為(0,1),且∠PBQ=60°,試求所有滿(mǎn)足條件的直線(xiàn)PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

當(dāng)路況良好時(shí),在干燥的路面上,汽車(chē)的剎車(chē)距離s與車(chē)速v之間的關(guān)系如下表所示:
v/(km/h)406080100120
s/m24.27.21115.6
(1)在平面直角坐標(biāo)系中描出每對(duì)(v,s)所對(duì)應(yīng)的點(diǎn),并用光滑的曲線(xiàn)順次連接各點(diǎn);
(2)利用圖象驗(yàn)證剎車(chē)距離s(m)與車(chē)速v(km/h)是否有如下關(guān)系:s=
1
1000
v2+
1
100
v0
;
(3)求當(dāng)s=9m時(shí)的車(chē)速v.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市某工藝廠(chǎng)為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷(xiāo).經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷(xiāo)售單價(jià)x(元/件)30405060
每天銷(xiāo)售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)定為多少時(shí),工藝廠(chǎng)試銷(xiāo)該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷(xiāo)售單價(jià)最高不能超過(guò)45元/件,那么銷(xiāo)售單價(jià)定為多少時(shí),工藝廠(chǎng)試銷(xiāo)該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,點(diǎn)C、B分別為拋物線(xiàn)C1:y1=x2+1,拋物線(xiàn)C2:y2=a2x2+b2x+c2的頂點(diǎn).分別過(guò)點(diǎn)B、C作x軸的平行線(xiàn),交拋物線(xiàn)C1、C2于點(diǎn)A、D,且AB=BD.
(1)求點(diǎn)A的坐標(biāo):
(2)如圖2,若將拋物線(xiàn)C1:“y1=x2+1”改為拋物線(xiàn)“y1=2x2+b1x+c1”.其他條件不變,求CD的長(zhǎng)和a2的值;
(3)如圖2,若將拋物線(xiàn)C1:“y1=x2+1”改為拋物線(xiàn)“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值______(直接寫(xiě)結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

市“健益”超市購(gòu)進(jìn)一批20元/千克的綠色食品,如果以30元/千克銷(xiāo)售,那么每天可售出400千克.由銷(xiāo)售經(jīng)驗(yàn)知,每天銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)(x≥30)存在如下圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷(xiāo)售該綠色食品每天獲得利潤(rùn)為P元,當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)4480元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷(xiāo)售單價(jià)x的范圍(直接寫(xiě)出).

查看答案和解析>>

同步練習(xí)冊(cè)答案