【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
【答案】(1)見解析;(2)見解析;(3)
【解析】試題分析:(1)要證明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn),只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問(wèn)題得解.
(2)根據(jù)兩個(gè)直角三角形相似得到強(qiáng)相似點(diǎn)的兩種情況即可.
(3)因?yàn)辄c(diǎn)E是梯形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn),所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對(duì)應(yīng)線段成比例,可以判斷出AE和BE的數(shù)量關(guān)系,從而可求出解.
解:(1)點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn).
理由:∵∠A=55°,
∴∠ADE+∠DEA=125°.
∵∠DEC=55°,
∴∠BEC+∠DEA=125°.
∴∠ADE=∠BEC.
∵∠A=∠B,
∴△ADE∽△BEC.
∴點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn).
(2)作圖如下:
(3)∵點(diǎn)E是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折疊可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠BCD=30°,
∴BE=CE=AB.
在Rt△BCE中,tan∠BCE==tan30°,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,∠EBC= °;
(2)平面內(nèi)將一副三角板按如圖2所示擺放,若∠EBC=165°,那么∠α= °;
(3)平面內(nèi)將一副三角板按如圖3所示擺放,∠EBC=115°,求∠α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號(hào)分別為2和7,乙口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號(hào)分別為4和5,丙口袋中裝有三個(gè)相同的小球,它們的標(biāo)號(hào)分別為3,8,9.從這3個(gè)口袋中各隨機(jī)地取出1個(gè)小球.
(1)求取出的3個(gè)小球的標(biāo)號(hào)全是奇數(shù)的概率是多少?
(2)以取出的三個(gè)小球的標(biāo)號(hào)分別表示三條線段的長(zhǎng)度,求這些線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,,,點(diǎn)D在x軸上,若在線段包括兩個(gè)端點(diǎn)上找點(diǎn)P,使得點(diǎn)A,D,P構(gòu)成等腰三角形的點(diǎn)P恰好只有1個(gè),下列選項(xiàng)中滿足上述條件的點(diǎn)D坐標(biāo)不可以是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在點(diǎn)B的左邊,線段AB的長(zhǎng)為20cm;點(diǎn)C在點(diǎn)D的左邊,點(diǎn)C、D在線段AB上,CD=10cm,點(diǎn)E是線段AC的中點(diǎn),點(diǎn)F是線段BD的中點(diǎn)
(1)若AC=4cm,求線段EF的長(zhǎng);
(2)若AC=acm,,用含a的式子表示線段BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對(duì)稱軸為x=<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對(duì)稱軸為x=<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長(zhǎng)為16,面積為,E為AB的中點(diǎn),若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( 。
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=.
(1)求證:AMMB=EMMC;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.
【答案】(1)證明見解析(2)4(3)
【解析】(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;
(3)過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過(guò)作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.
【題型】解答題
【結(jié)束】
21
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時(shí)間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,D、E分別是AB、BC邊上的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,交DE的延長(zhǎng)線于F點(diǎn),連接CD、BF.
(1)求證:△BDE≌△CFE;
(2)△ABC滿足什么條件時(shí),四邊形BDCF是矩形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com